1
|
Mo H, Wang X, Ji G, Liang X, Yang Y, Sun W, Jia X, Xu L, Qiao Y, Zhou H, Zhao W, Fu S, Zhang X. The effect of SNPs in lncRNA as ceRNA on the risk and prognosis of hepatocellular carcinoma. BMC Genomics 2022; 23:769. [DOI: 10.1186/s12864-022-09010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Most susceptible loci of hepatocellular carcinoma (HCC) identified by genome-wide association studies (GWAS) are located in non-coding regions, and the mechanism of action remains unclear. The objective of this study was to explore the association of single nucleotide polymorphisms (SNPs) on long non-coding RNAs (lncRNAs) that affect competing endogenous RNAs (ceRNA) regulation mechanism with the risk and prognosis of HCC.
Methods
Based on a set of bioinformatics strategies, eight lncRNA genes that affect HCC through the mechanism of lncRNA-mediated ceRNA were systematically screened, and 15 SNPs that affect microRNA (miRNA) binding in these lncRNA genes were annotated. Genotyping was performed in 800 HCC cases and 801 healthy controls to examine associations of these SNPs with HCC in a northeastern Chinese Han population.
Results
The GG, GC and GG + GC genotypes of HOTAIR rs7958904 were associated with a 0.65, 0.59 and 0.63-fold decreased HCC risk, respectively. In addition, HCC patients with PVT1 rs3931282 AA + GA genotypes were less prone to develop late-stage cancers in a stratified analysis of clinical characteristics. When stratified by clinical biochemical indexes, rs1134492 and rs10589312 in PVT1 and rs84557 in EGFR-AS1 showed significant associations with aspartate aminotransferase (AST), alanine aminotransferase (ALT) or AST/ALT ratio in HCC patients. Furthermore, we constructed potential ceRNA regulatory axes that might be affected by five positive SNPs to explain the causes of these genetic associations.
Conclusions
HOTAIR rs7958904, PVT1 rs3931282, rs1134492 and rs10589312, and EGFR-AS1 rs84557 might be predictors for HCC risk or prognosis. Our results provide new insights into how SNPs on lncRNA-mediated ceRNAs confer interindividual differences to occurrence and progression of HCC.
Collapse
|
2
|
MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 2022; 28:128. [PMID: 36303105 PMCID: PMC9615236 DOI: 10.1186/s10020-022-00555-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. Conclusions MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Collapse
|
3
|
Hu Y, Zhou W, Xue Z, Liu X, Feng Z, Zhang Y, Zhang X, Liu X, Li W, Zhang Q, Chen A, Huang B, Wang J. Thiabendazole inhibits glioblastoma cell proliferation and invasion targeting MCM2. J Pharmacol Exp Ther 2021; 380:63-75. [PMID: 34750208 DOI: 10.1124/jpet.121.000852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
Thiabendazole (TBZ), approved by the U.S. Food and Drug Administration (FDA) for human oral use, elicits a potential anti-cancer activity on cancer cells in vitro and in animal models. Here, we evaluated the efficacy of TBZ in the treatment of human glioblastoma multiforme (GBM). TBZ reduced the viability of GBM cells (P3, U251, LN229, A172, and U118MG) relative to controls in a dose- and time-dependent manner. However, normal human astrocytes (NHA) exhibited a greater IC50 than tumor cells lines and were thus, more resistant to its cytotoxic effects. EdU positive cells and the number of colonies formed was decreased in TBZ-treated cells (at 150 μM, P < 0.05 and at 150 μM, P < 0.001, respectively). This decrease in proliferation was associated with a G2/M arrest as assessed with flow cytometry, and the downregulation of G2/M check point proteins. In addition, TBZ suppressed GBM cell invasion. Analysis of RNA sequencing data comparing TBZ treated cells with controls yielded a group of differentially expressed genes, the functions of which were associated with the cell cycle and DNA replication. The most significantly downregulated gene in TBZ-treated cells was mini-chromosome maintenance protein 2 (MCM2). SiRNA knockdown of MCM2 inhibited proliferation, causing a G2/M arrest in GBM cell lines and suppressed invasion. Taken together, our results demonstrated that TBZ inhibited proliferation and invasion in GBM cells through targeting of MCM2. Significance Statement TBZ inhibits the proliferation and invasion of glioblastoma cells by downregulating the expression of MCM2. These results support the repurposing of TBZ as a possible therapeutic drug in the treatment of GBM.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, China
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Institute of Brain and Brain-Inspired Science, China
| |
Collapse
|
4
|
Chen YR, Li YT, Wang MQ, Zhu SL. Prognostic significance and function of MCM10 in human hepatocellular carcinoma. Future Oncol 2021; 17:4457-4470. [PMID: 34350781 DOI: 10.2217/fon-2021-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of MCM10, a conserved replication factor, in hepatocellular carcinoma (HCC). Methods: We used data from 364 HCC patients in the Cancer Genome Atlas database and conducted in vitro experiments to confirm the role of MCM10. Results: High MCM10 expression correlated with poor HCC patient outcome and was an independent prognosticator for HCC. Time-dependent receiver operating characteristic curve analysis found that the sequential trend of MCM10 for survival was not inferior to that of the tumor node metastasis stage. The MCM10 model had a higher C-index than the non-MCM10 model, indicating that incorporating MCM10 into a multivariate model improves the model's prognostic accuracy for HCC. Genetic alterations of MCM10 prominently correlated with an unfavorable HCC outcome. Conclusion: Our findings strongly suggest using the MCM10 gene as a prognostic indicator in HCC.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Ting Li
- Department of General Practice, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei-Qian Wang
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sen-Lin Zhu
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Mei N, Zhao N, Tian T, Jiao M, Li C. Biological features, gene expression profile, and mechanisms of drug resistance of two- and three-dimensional hepatocellular carcinoma cell cultures. Pharmacol Res Perspect 2021; 9:e00715. [PMID: 33486902 PMCID: PMC7827916 DOI: 10.1002/prp2.715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious onset and rapid progression. Its treatment is often difficult owing to tumor resistance. In this study, we aimed to understand the different biological characteristics, gene expression profiles, and drug resistance mechanisms of HCC cells cultured under different conditions. A conventional adherence method and a liquid overlay technique were used to prepare two- and three-dimensional cultures of Bel-7402 and 5-fluorouracil (5-Fu)-resistant Bel-7402 (Bel-7402/5-Fu) cells. Morphological characteristics were assessed via microscopy, and cell cycle distribution and apoptotic rate were obtained using flow cytometry. Cell sensitivity to different concentrations of drugs was detected with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Gene expression profiles and signal transduction pathways of Bel-7402 and Bel-7402/5-Fu cells under different culture conditions were determined using gene chips. Cells in three-dimensional culture were suspended and they grew into dense multicellular spheroid (MCS) structures, aggregating with each other. In contrast to cells in the two-dimensional culture, cell cycle arrest was observed in MCSs. The sensitivity of Bel-7402 cells in the two-dimensional culture to drugs at high concentrations was significantly higher than that of cells in the three-dimensional culture (p < .05). The apoptotic rate of Bel-7402 and Bel-7402/5-Fu cells was also higher in the two-dimensional culture (p < .05). Signal transduction pathway analysis showed that after Bel-7402 cells acquired resistance to 5-Fu, CCND1, MCM2, and MCM3 gene expression was upregulated in the G1 to S cell cycle control signal transduction pathway, CDKN1C and CCNG2 gene expression was downregulated, and MCM2 and MCM3 gene expression was upregulated in the DNA replication signal transduction pathway. Therefore, the liquid overlay technique is a simple, low-cost procedure to successfully construct three-dimensional culture models of HCC. This study provides new information and methods for exploring the molecular mechanisms of liver cancer resistance, clinical treatment, development of molecular information, and interventional prevention.
Collapse
Affiliation(s)
- Nan Mei
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Ni Zhao
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Tao Tian
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Min Jiao
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Chunli Li
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| |
Collapse
|
6
|
|
7
|
Zhou H, Zeng X, Li A, Zhou W, Tang L, Hu W, Fan Q, Meng X, Deng H, Duan L, Li Y, Deng Z, Hong X, Xiao Y. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat Commun 2020; 11:6183. [PMID: 33273452 PMCID: PMC7713230 DOI: 10.1038/s41467-020-19945-w] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
NIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties. To date, few small-molecule NIR-II fluorophores have been discovered with donor-acceptor-donor (D-A-D) or symmetrical structures, and upconversion-mitochondria-targeted NIR-II dyes have not been reported. Herein, we report development of D-A type thiopyrylium-based NIR-II fluorophores with frequency upconversion luminescence (FUCL) at ~580 nm upon excitation at ~850 nm. H4-PEG-PT can not only quickly and effectively image mitochondria in live or fixed osteosarcoma cells with subcellular resolution at 1 nM, but also efficiently convert optical energy into heat, achieving mitochondria-targeted photothermal cancer therapy without ROS effects. H4-PEG-PT has been further evaluated in vivo and exhibited strong tumor uptake, specific NIR-II signals with high spatial and temporal resolution, and remarkable NIR-II image-guided photothermal therapy. This report presents the first D-A type thiopyrylium NIR-II theranostics for synchronous upconversion-mitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and excellent photothermal efficiency.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
- College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Tibet University, Lhasa, 850000, China
| | - Xiaodong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Anguo Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Wenyi Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Lin Tang
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, Sichuan, 611137, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | - Lian Duan
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yanqin Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.
- College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Tibet University, Lhasa, 850000, China.
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China.
| |
Collapse
|
8
|
Song H, Ding N, Li S, Liao J, Xie A, Yu Y, Zhang C, Ni C. Identification of Hub Genes Associated With Hepatocellular Carcinoma Using Robust Rank Aggregation Combined With Weighted Gene Co-expression Network Analysis. Front Genet 2020; 11:895. [PMID: 33133125 PMCID: PMC7561391 DOI: 10.3389/fgene.2020.00895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Bioinformatics provides a valuable tool to explore the molecular mechanisms underlying pathogenesis of hepatocellular carcinoma (HCC). To improve prognosis of patients, identification of robust biomarkers associated with the pathogenic pathways of HCC remains an urgent research priority. Methods We employed the Robust Rank Aggregation method to integrate nine qualified HCC datasets from the Gene Expression Omnibus. A robust set of differentially expressed genes (DEGs) between tumor and normal tissue samples were screened. Weighted gene co-expression network analysis was applied to cluster DEGs and the key modules related to clinical traits identified. Based on network topology analysis, novel risk genes derived from key modules were mined and biological verification performed. The potential functions of these risk genes were further explored with the aid of miRNA–mRNA regulatory networks. Finally, the prognostic ability of these genes was assessed by constructing a clinical prediction model. Results Two key modules showed significant association with clinical traits. In combination with protein–protein interaction analysis, 29 hub genes were identified. Among these genes, 19 from one module showed a pattern of upregulation in HCC and were associated with the tumor node metastasis stage, and 10 from the other module displayed the opposite trend. Survival analyses indicated that all these genes were significantly related to patient prognosis. Based on the miRNA-mRNA regulatory network, 29 genes strongly linked to tumor activity were identified. Notably, five of the novel risk genes, ABAT, DAO, PCK2, SLC27A2, and HAO1, have rarely been reported in previous studies. Gene set enrichment analysis for each gene revealed regulatory roles in proliferation and prognosis of HCC. Least absolute shrinkage and selection operator regression analysis further validated DAO, PCK2, and HAO1 as prognostic factors in an external HCC dataset. Conclusion Analysis of multiple datasets combined with global network information presents a successful approach to uncover the complex biological mechanisms of HCC. More importantly, this novel integrated strategy facilitates identification of risk hub genes as candidate biomarkers for HCC, which could effectively guide clinical treatments.
Collapse
Affiliation(s)
- Hao Song
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Na Ding
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shang Li
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianlong Liao
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Aimin Xie
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chunlong Zhang
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Li Q, Ding Q, Li Y, Zeng X, Liu Y, Lu S, Zhou H, Wang X, Wu J, Meng X, Deng Z, Xiao Y. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem Commun (Camb) 2020; 56:3289-3292. [PMID: 32073036 DOI: 10.1039/c9cc09865h] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Near-infrared fluorescence imaging in the 1000-1700 nm-wavelength window (NIR-II) has exhibited great potential for deep-tissue bioimaging due to its diminished auto-fluorescence, suppressed photo-scattering, deep penetration, and high spatial and temporal resolutions. Various kinds of inorganic nanomaterials have been extensively developed for NIR-IIa (1300-1400 nm) and NIR-IIb (1500-1700 nm) bioimaging. However, the development of small-molecule NIR-IIa and NIR-IIb fluorophores is still in its infancy. Herein, we designed and synthesized a novel NIR-II organic aggregation-induced emission (AIE) fluorophore (HQL2) with a fluorescence tail extending into the NIR-IIa and NIR-IIb region based on our previous reported skeleton Q4. The encapsulated NIR-II AIE nanoparticles (HQL2 dots) exhibited water solubility and biocompatibility, and high brightness for NIR-IIa and NIR-IIb vascular imaging in vivo, a first for NIR-II AIE dots.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. and College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Tibet University, Lasa, 850000, China
| | - Qihang Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yang Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiaodong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yishen Liu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Siyu Lu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiaofei Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Junzhu Wu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. and College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Tibet University, Lasa, 850000, China
| |
Collapse
|
10
|
Zhou H, Li S, Zeng X, Zhang M, Tang L, Li Q, Chen D, Meng X, Hong X. Tumor-homing peptide-based NIR-II probes for targeted spontaneous breast tumor imaging. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, Chen H, Fang H, Qian K, Zhang Y, Cheng Z, Lan X. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol 2020; 14:1089-1100. [PMID: 32191387 PMCID: PMC7191196 DOI: 10.1002/1878-0261.12674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
All tumor imaging modalities have resolution limits below which deeply situated small metastatic foci may not be identified. Moreover, incomplete lesion excision will affect the outcomes of the patients. Scintigraphy is adept in locating lesions, and second near-infrared window (NIR-II) imaging may allow precise real-time tumor delineation. To achieve complete excision of all lesions, multimodality imaging is a promising method for tumor identification and management. Here, a NIR-II thiopyrylium salt, XB1034, was first synthesized and bound to cetuximab and trans-cyclooctene (TCO) to produce XB1034-cetuximab-TCO. This probe provides excellent sensitivity and high temporal resolution NIR-II imaging in mice bearing tumors developed from human breast cancer cells MDA-MB-231. To enable PET imaging, 68 Ga-NETA-tetrazine is subsequently injected into the mice to undergo a bio-orthogonal reaction with the preinjected XB1034-cetuximab-TCO. PET images achieved in the tumor models using the pretargeting strategy are of much higher quality than those obtained using the direct radiolabeling method. Moreover, real-time NIR-II imaging allows accurate tumor excision and sentinel lymph node mapping. In conclusion, XB1034 is a promising molecular imaging probe for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Bingbing Ding
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Chunrong Qu
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Huiling Li
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Yu Sun
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Yongkang Gai
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Hao Chen
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Hanyi Fang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Kun Qian
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Yongxue Zhang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Zhen Cheng
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Xiaoli Lan
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| |
Collapse
|
12
|
Zuo T, Chen P, Jing S, Zhang T, Chang L, Xu F, Zhao C, Xu P. Quantitative Proteomics Reveals the Development of HBV-Associated Glomerulonephritis Triggered by the Downregulation of SLC7A7. J Proteome Res 2020; 19:1556-1564. [PMID: 32155069 DOI: 10.1021/acs.jproteome.9b00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a hepadnavirus, hepatitis B virus (HBV) can cause damage to extrahepatic organs. The kidney is one of the organs that is more susceptible to damage. Research studies on HBV-associated glomerulonephritis (HBV-GN) have been going on for decades. However, the underlying molecular mechanism remains obscure. Here, we applied a tandem mass tag (TMT) isobaric labeling-based method to quantitatively profile the kidney proteome of HBV transgenic mice to illustrate the pathological mechanisms of HBV-GN. Weighted correlation network analysis, a clustering method for gene expression, is used to cluster proteins. Totally, we identified 127 proteins that were highly associated with HBV expression out of a total of 5169 quantified proteins. Among them, the downregulated solute carrier (SLC) family proteins are involved in the process of HBV-GN. We also found that IL1B was upregulated in the kidney tissue of HBV transgenic mice. These findings suggest that HBV disrupts the small molecule transport network of the kidney, which contributes to the occurrence of HBV-GN. The transporter, particularly SLC family 7 member 7 (SLC7A7), is involved in this process, which might serve as an intervention target for HBV-GN. All MS data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the data set identifier PXD016450.
Collapse
Affiliation(s)
- Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Sha Jing
- National Clinical Research Center for Aging and Medicine, Huashan Hospital & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China.,Second Clinical Medicine Collage, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,Guizhou University School of Medicine, Guiyang 550025, P.R. China
| |
Collapse
|
13
|
Zeng X, Xue L, Chen D, Li S, Nong J, Wang B, Tang L, Li Q, Li Y, Deng Z, Hong X, Wu M, Xiao Y. A bright NIR-II fluorescent probe for breast carcinoma imaging and image-guided surgery. Chem Commun (Camb) 2020; 55:14287-14290. [PMID: 31712798 DOI: 10.1039/c9cc07694h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel bright near-infrared II (NIR-II, 1000-1700 nm) fluorescent probe with excellent water-solubility, superior photostability, and excellent in vitro and in vivo biocompatibility was facilely synthesized for in vivo biomedical imaging of xenograft breast tumor and chemically induced spontaneous breast carcinoma. To the best of our knowledge, it is the first time that the superior practical applications of this NIR-II probe in dimethylbenzanthracene (DMBA)-induced rat mammary carcinoma imaging and image-guided rat carcinoma surgery were demonstrated.
Collapse
Affiliation(s)
- Xiaodong Zeng
- State Key Laboratory of Virology, Department Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou H, Yi W, Li A, Wang B, Ding Q, Xue L, Zeng X, Feng Y, Li Q, Wang T, Li Y, Cheng X, Tang L, Deng Z, Wu M, Xiao Y, Hong X. Specific Small-Molecule NIR-II Fluorescence Imaging of Osteosarcoma and Lung Metastasis. Adv Healthc Mater 2020; 9:e1901224. [PMID: 31793757 DOI: 10.1002/adhm.201901224] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is an aggressive tumor of mesenchymal origin that is more likely to spread to the lung than others, with a major impact on patients' prognosis. The optimal imaging method that can reliably detect or exclude pulmonary metastases from osteosarcoma is still scarce. Herein, two homologous types of fluorescent probes CH1055-PEG-PT and CH1055-PEG-Affibody, which show highly promising results for targeting imaging of osteosarcoma and its lung metastasis, respectively, are designed and synthesized. It is found that the NIR-II imaging quality of CH1055-PEG-PT is far superior to that of computed tomography for the early in vivo 143B tumor imaging, and this probe-guided surgery for accurate resection of 143B tumor is further performed. The high-resolution visualization of primary and micrometastatic lung lesions of osteosarcoma by using CH1055-PEG-Affibody is also demonstrated. Therefore, the attractive imaging properties of CH1055-PEG-PT and CH1055-PEG-Affibody, including high levels of uptakes, and high spatial and temporal resolution, open up opportunities for molecular imaging and clinical translation of osteosarcoma and its lung metastasis in the unique second near-infrared window.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Wanrong Yi
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan University Wuhan Hubei 430071 China
| | - Anguo Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Bo Wang
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Qihang Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Liru Xue
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Xiaodong Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Yanzhi Feng
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Qianqian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Tian Wang
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Yang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Xiaoding Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Lin Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Mingfu Wu
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Yuling Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| |
Collapse
|
15
|
Li Y, Hu X, Yi W, Li D, Guo Y, Qi B, Yu A. NIR-II Fluorescence Imaging of Skin Avulsion and Necrosis. Front Chem 2019; 7:696. [PMID: 31696110 PMCID: PMC6817597 DOI: 10.3389/fchem.2019.00696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Skin avulsion is commonly seen in individuals exposed to heavy shearing forces. Subcutaneous tissue detachment and bone fractures usually accompany skin avulsion. Thus, the estimation of the extent of damaged tissue is very important. Currently, the viability of skin and subcutaneous tissue is determined by clinical observations, and these observations always underestimate the true extent of the avulsed skin. Herein, we synthesized an innovative probe, CH1055-GRRRDEVDK (CH1055-GK), which can specifically bind to caspase-3 so as to image skin avulsion and define necrotic regions. Our uptake and binding affinity tests in apoptotic cells and evaluation of the probe ex vivo and in vivo showed that the probe has a strong ability to bind caspase-3 in skin avulsion models and that it vividly detected the necrotic area in avulsed skins. Furthermore, the increased fluorescence intensity of the probe in the avulsed skin showed a larger affected area than that determined by clinical observations in live mice. Consequently, our results indicated that observation of the caspase-3-targeted probe CH1055-GK via NIR-II imaging allowed the clear detection of skin avulsion in subjects, indicating its potential as an imaging tool for the early diagnosis of skin avulsion and the determination of necrotic margins.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wanrong Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daifeng Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Guo
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Recent advances on small-molecule fluorophores with emission beyond 1000 nm for better molecular imaging in vivo. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Zhang R, Wang Z, Xu L, Xu Y, Lin Y, Zhang Y, Sun Y, Yang G. Rational Design of a Multifunctional Molecular Dye with Single Dose and Laser for Efficiency NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal Therapy. Anal Chem 2019; 91:12476-12483. [DOI: 10.1021/acs.analchem.9b03152] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ruiping Zhang
- Shanxi Da Yi Hospital, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Zhenjun Wang
- Shanxi Da Yi Hospital, Shanxi Medical University, Taiyuan 030001, P. R. China
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liying Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Yuling Xu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, Wuhan University, Wuhan 430074, P. R. China
| | - Ying Zhang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
18
|
Feng Z, Yu X, Jiang M, Zhu L, Zhang Y, Yang W, Xi W, Li G, Qian J. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 2019; 9:5706-5719. [PMID: 31534513 PMCID: PMC6735390 DOI: 10.7150/thno.31332] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Cerebrovascular diseases, together with malignancies, still pose a huge threat to human health nowadays. With the advantages of its high spatial resolution and large penetration depth, fluorescence bioimaging in the second near-infrared spectral region (NIR-II, 900-1700 nm) and its related imaging-guided therapy based on biocompatible fluorescence dyes have become a promising theranostics method. Methods: The biocompatibility of IR-820 we used in NIR-II fluorescence bioimaging was verified by long-term observation. The model of the mouse with a cranial window, the mouse model of middle cerebral artery occlusion (MCAO) and a subcutaneous xenograft mouse model of bladder tumor were established. NIR-II fluorescence cerebrovascular functional imaging was carried out by IR-820 assisted NIR-II fluorescence microscopy. Bladder tumor was treated by NIR-II fluorescence imaging-guided photothermal therapy. Results: We have found that IR-820 has considerable NIR-II fluorescence intensity, and shows increased brightness in serum than in water. Herein, we achieved real time and in vivo cerebrovascular functional imaging of mice with high spatial resolution and large penetration depth, based on IR-820 assisted NIR-II fluorescence microscopy. In addition, IR-820 was successfully employed for NIR-II fluorescence imaging and photothermal therapy of tumor in vivo, and the subcutaneous tumors were inhibited obviously or eradicated completely. Conclusion: Due to the considerable fluorescence intensity in NIR-II spectral region and the good photothermal effect, biocompatible and excretable IR-820 holds great potentials for functional angiography and cancer theranostics in clinical practice.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research; JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Yu
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Minxiao Jiang
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhang
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Yang
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou, 310058, China
| | - Gonghui Li
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research; JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, Hangzhou, 310058, China
- Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
19
|
Qu C, Xiao Y, Zhou H, Ding B, Li A, Lin J, Zeng X, Chen H, Qian K, Zhang X, Fang W, Wu J, Deng Z, Cheng Z, Hong X. Quaternary Ammonium Salt Based NIR-II Probes for in vivo Imaging. ADVANCED OPTICAL MATERIALS 2019; 7:1900229. [PMID: 32983835 PMCID: PMC7517706 DOI: 10.1002/adom.201900229] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 05/24/2023]
Abstract
Traditional luminescent materials including fluorescent probes suffer from notorious aggregation-caused quenching (ACQ) in aqueous solutions. Although several approaches such as the aggregation-induced emission (AIE) effect have been developed, it remains a significant challenge to identify an effective and efficient strategy to resolve this issue. Herein, quaternary ammonium salts Q8PBn and Q8PNap as a novel class of bright near infrared window II (NIR-II, 1,000 - 1,700 nm) probes were designed and synthesized, and the twisted intramolecular charge transfer (TICT) formation at the excited state can be effectively suppressed for the newly designed probes. Furthermore, Q8PNap complexation with fetal bovine serum (Q8PNap/FBS) significantly increased the quantum yield by ~ 32-fold compared with PEGylated tertiary amine Q8P, and Q8PNap/FBS was successfully used to achieve high spatial and temporal resolution imaging of hind limb vasculature, lymphatic system, and small tumor metastasis, as well as precise NIR-II imaging-guided tumor and lymph node surgery in small animal models for the first time.
Collapse
Affiliation(s)
- Chunrong Qu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Bingbing Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Anguo Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Jiacheng Lin
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaodong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA
| | - Kun Qian
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA
| | - Xiao Zhang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA
| | - Wei Fang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA
| | - Junzhu Wu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
20
|
Yi W, Zhou H, Li A, Yuan Y, Guo Y, Li P, Qi B, Xiao Y, Yu A, Hu X. A NIR-II fluorescent probe for articular cartilage degeneration imaging and osteoarthritis detection. Biomater Sci 2019; 7:1043-1051. [PMID: 30628591 DOI: 10.1039/c8bm01440j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage (AC) is a complex water-bearing tissue consisting of chondrocytes, proteoglycans, and collagen. AC degeneration, which occurs in the early stage and throughout the entire course of osteoarthritis (OA), is one of the main pathological changes of OA. However, current clinical approaches are unable to detect AC degradation during the early stage of OA. Herein, a novel NIR-II probe, CH1055-WL, was developed with an organic fluorophore (CH1055) and type II collagen-binding peptide (WYRGRL) for AC targeting and degeneration imaging. In vitro and in vivo imaging studies demonstrated that CH1055-WL specifically bound to AC and permitted sensitive detection of age-related or surgically induced AC degeneration in living mice. In vitro imaging of cartilage samples from pig knee joint and in vivo imaging of live mice with the probe administered via local injection in joint cavities demonstrated that CH1055-WL specifically and efficiently bound to AC. Further evaluation of CH1055-WL revealed sensitive detection of age-related AC degeneration and surgically induced AC degeneration in living mice. Our results indicated that the cartilage-targeting probe CH1055-WL allowed visual monitoring of AC degeneration in living subjects, thus displaying promise for early OA detection.
Collapse
Affiliation(s)
- Wanrong Yi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Number 169, East Lake Road, Wuhan, Hubei 430071, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zeng X, Chen Z, Tang L, Yang H, Liu N, Zhou H, Li Y, Wu J, Deng Z, Yu Y, Deng H, Hong X, Xiao Y. A novel near-infrared fluorescent light-up probe for tumor imaging and drug-induced liver injury detection. Chem Commun (Camb) 2019; 55:2541-2544. [PMID: 30742156 DOI: 10.1039/c8cc10286d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel near-infrared fluorescent light-up probe with a tumor-homing pentapeptide, CREKA (Cys-Arg-Glu-Lys-Ala), specifically binds to fibrin-fibronectin complexes was rationally designed and developed for biomedical imaging. Its superior practical applications in tumor imaging and drug-induced liver injury detection are well demonstrated for the first time.
Collapse
Affiliation(s)
- Xiaodong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin J, Zeng X, Xiao Y, Tang L, Nong J, Liu Y, Zhou H, Ding B, Xu F, Tong H, Deng Z, Hong X. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem Sci 2019; 10:1219-1226. [PMID: 30774922 PMCID: PMC6349025 DOI: 10.1039/c8sc04363a] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Near-infrared II fluorescence imaging holds great promise for in vivo imaging and imaging-guided surgery with deep penetration and high spatiotemporal resolution. However, most NIR-II aromatic luminophores suffer from the notorious aggregation-caused quenching (ACQ) effect in the aqueous solution, which largely hinders their biomedical application in vivo. In this study, the first NIR-II organic aggregation-induced emission (AIE) fluorophore (HLZ-BTED), encapsulated as nanoparticles (HLZ-BTED dots) for in vivo biomedical imaging, was designed and synthesized. The NIR-II AIE HLZ-BTED dots showed high temporal resolution, high photostability, outstanding water-solubility and biocompatibility in vitro and in vivo. The HLZ-BTED dots were further used for long-term breast tumor imaging and visualizing tumor-feeding blood vessels, long-term hind limb vasculature and incomplete hind limb ischemia. More importantly, as a proof-of-concept, this is the first time that non-invasive and real-time NIR-II imaging of the gastrointestinal tract in health and disease has been performed, making the AIE dots a promising tool for gastrointestinal (GI) tract research, such as understanding the healthy status of GI peristalsis, diagnosing and evaluating intestinal motility dysfunction, and assessing drug effects on intestinal obstruction.
Collapse
Affiliation(s)
- Jiacheng Lin
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Shenzhen Institute of Wuhan University , Shenzhen , 518057 , China
| | - Xiaodong Zeng
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Shenzhen Institute of Wuhan University , Shenzhen , 518057 , China
| | - Yuling Xiao
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Shenzhen Institute of Wuhan University , Shenzhen , 518057 , China
| | - Lin Tang
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Jinxia Nong
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Yufang Liu
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Hui Zhou
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Shenzhen Institute of Wuhan University , Shenzhen , 518057 , China
| | - Bingbing Ding
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control , Medical College , Tibet University , Lhasa , 850000 , China
| | - Hanxing Tong
- Department of General Surgery , Zhongshan Hospital , Fudan University , Shanghai , 200032 , China
| | - Zixin Deng
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Xuechuan Hong
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Shenzhen Institute of Wuhan University , Shenzhen , 518057 , China
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control , Medical College , Tibet University , Lhasa , 850000 , China
| |
Collapse
|
23
|
Ding B, Xiao Y, Zhou H, Zhang X, Qu C, Xu F, Deng Z, Cheng Z, Hong X. Polymethine Thiopyrylium Fluorophores with Absorption beyond 1000 nm for Biological Imaging in the Second Near-Infrared Subwindow. J Med Chem 2018; 62:2049-2059. [PMID: 30501190 DOI: 10.1021/acs.jmedchem.8b01682] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Small-molecule fluorescence imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has gained increasing interest in clinical application. Till now, very few studies have been exploited in the small-molecule fluorophores with both excitation and emission in the NIR-II window. Inspired by the indocyanine green structure, a series of polymethine dyes with both absorption and emission in the NIR-II window have been developed for NIR-II imaging, providing the feasibility to directly compare optical imaging in the NIR-IIa (1300-1400 nm) subwindow under 1064 nm excitation with that in the NIR-II window under 808 nm excitation. The signal-background ratio and the tumor-normal tissue ratio achieved great improvement under 1064 nm excitation in the imaging of mouse blood pool and U87 glioma tumors. Our study not only introduces a broadband emission fluorophore for both NIR-II and NIR-IIa imaging, but also reveals the advantages of NIR-II excitation over NIR-I in in vivo imaging.
Collapse
Affiliation(s)
- Bingbing Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China.,Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection , Stanford University , Stanford , California 94305-5344 , United States
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Xiao Zhang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection , Stanford University , Stanford , California 94305-5344 , United States
| | - Chunrong Qu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection , Stanford University , Stanford , California 94305-5344 , United States
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College , Tibet University , Lhasa 850000 , China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection , Stanford University , Stanford , California 94305-5344 , United States
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China.,Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College , Tibet University , Lhasa 850000 , China.,Shenzhen Institute of Wuhan University , Shenzhen 518057 , China
| |
Collapse
|
24
|
|
25
|
Zeng X, Xiao Y, Lin J, Li S, Zhou H, Nong J, Xu G, Wang H, Xu F, Wu J, Deng Z, Hong X. Near-Infrared II Dye-Protein Complex for Biomedical Imaging and Imaging-Guided Photothermal Therapy. Adv Healthc Mater 2018; 7:e1800589. [PMID: 30051654 DOI: 10.1002/adhm.201800589] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/27/2018] [Indexed: 01/10/2023]
Abstract
The development of novel biodegradable and nontoxic fluorophores that integrate diagnosis and therapy for effective cancer treatment has obtained tremendous attention in the past decades. In this report, water-soluble and biocompatible small-molecule near-infrared II (NIR-II) fluorescent dye H2a-4T complexed with fetal bovine serum (FBS) and Cetuximab proteins with excellent optical properties and targeting ability is prepared. High spatial and temporal resolution imaging of hind limb vasculature and the lymphatic system of living mice using H2a-4T@FBS complex is demonstrated in precise NIR-II imaging-guided sentinel lymph node surgery. More importantly, H2a-4T@Cetuximab complex not only exhibits a remarkable cell-killing ability but also achieves highly active tumor targeting efficiency for epidermal growth factor receptor, overexpressing colorectal cancer which is beneficial to in vivo NIR-II fluorescent imaging-guided photothermal therapy of colon tumors. To the best of our knowledge, it is the first time that the concept of light-harvesting complex is exploited for enhancing the NIR-II signals and photothermal energy conversion in molecule-protein complex theranostic agent, making them a promising candidate for future clinical applications in cancer theranostics.
Collapse
Affiliation(s)
- Xiaodong Zeng
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Yuling Xiao
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; Hubei Provincial Key Laboratory of Developmentally Originated Disease; Center for Experimental Basic Medical Education; Wuhan 430071 China
| | - Jiacheng Lin
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Shanshan Li
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Hui Zhou
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Jinxia Nong
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Guozhen Xu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; Hubei Provincial Key Laboratory of Developmentally Originated Disease; Center for Experimental Basic Medical Education; Wuhan 430071 China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University); Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 China
| | - Fuchun Xu
- Medical College; Tibet University; Lasa 850000 P. R. China
| | - Junzhu Wu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; Hubei Provincial Key Laboratory of Developmentally Originated Disease; Center for Experimental Basic Medical Education; Wuhan 430071 China
| | - Zixin Deng
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Xuechuan Hong
- State Key Laboratory of Virology; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE); Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
- Medical College; Tibet University; Lasa 850000 P. R. China
| |
Collapse
|