1
|
Siu WS, Ma H, Ko CH, Shiu HT, Cheng W, Lee YW, Kot CH, Leung PC, Lui PPY. Rat Plantar Fascia Stem/Progenitor Cells Showed Lower Expression of Ligament Markers and Higher Pro-Inflammatory Cytokines after Intensive Mechanical Loading or Interleukin-1β Treatment In Vitro. Cells 2023; 12:2222. [PMID: 37759446 PMCID: PMC10526819 DOI: 10.3390/cells12182222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The pathogenesis of plantar fasciitis is unclear, which hampers the development of an effective treatment. The altered fate of plantar fascia stem/progenitor cells (PFSCs) under overuse-induced inflammation might contribute to the pathogenesis. This study aimed to isolate rat PFSCs and compared their stem cell-related properties with bone marrow stromal cells (BMSCs). The effects of inflammation and intensive mechanical loading on PFSCs' functions were also examined. We showed that plantar fascia-derived cells (PFCs) expressed common MSC surface markers and embryonic stemness markers. They expressed lower Nanog but higher Oct4 and Sox2, proliferated faster and formed more colonies compared to BMSCs. Although PFCs showed higher chondrogenic differentiation potential, they showed low osteogenic and adipogenic differentiation potential upon induction compared to BMSCs. The expression of ligament markers was higher in PFCs than in BMSCs. The isolated PFCs were hence PFSCs. Both IL-1β and intensive mechanical loading suppressed the mRNA expression of ligament markers but increased the expression of inflammatory cytokines and matrix-degrading enzymes in PFSCs. In summary, rat PFSCs were successfully isolated. They had poor multi-lineage differentiation potential compared to BMSCs. Inflammation after overuse altered the fate and inflammatory status of PFSCs, which might lead to poor ligament differentiation of PFSCs and extracellular matrix degeneration. Rat PFSCs can be used as an in vitro model for studying the effects of intensive mechanical loading-induced inflammation on matrix degeneration and erroneous stem/progenitor cell differentiation in plantar fasciitis.
Collapse
Affiliation(s)
- Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cheuk Hin Kot
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
2
|
Liu Y, Wu W, Seunggi C, Li Z, Huang Y, Zhou K, Wang B, Chen Z, Zhang Z. The application and progress of stem cells in auricular cartilage regeneration: a systematic review. Front Cell Dev Biol 2023; 11:1204050. [PMID: 37564374 PMCID: PMC10409996 DOI: 10.3389/fcell.2023.1204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: The treatment of microtia or acquired ear deformities by surgery is a significant challenge for plastic and ENT surgeons; one of the most difficult points is constructing the scaffold for auricular reconstruction. As a type of cell with multiple differentiation potentials, stem cells play an essential role in the construction of cartilage scaffolds, and therefore have received widespread attention in ear reconstructive research. Methods: A literature search was conducted for peer-reviewed articles between 2005 and 2023 with the following keywords: stem cells; auricular cartilage; ear cartilage; conchal cartilage; auricular reconstruction, regeneration, and reparation of chondrocytes; tissue engineering in the following databases: PubMed, MEDLINE, Cochrane, and Ovid. Results: Thirty-three research articles were finally selected and their main characteristics were summarized. Adipose-derived stem cells (ADSCs), bone marrow mesenchymal stem cells (BMMSCs), perichondrial stem/progenitor cells (PPCs), and cartilage stem/progenitor cells (CSPCs) were mainly used in chondrocyte regeneration. Injecting the stem cells into the cartilage niche directly, co-culturing the stem cells with the auricular cartilage cells, and inducing the cells in the chondrogenic medium in vitro were the main methods that have been demonstrated in the studies. The chondrogenic ability of these cells was observed in vitro, and they also maintained good elasticity and morphology after implantation in vivo for a period of time. Conclusion: ADSC, BMMSC, PPC, and CSPC were the main stem cells that have been researched in craniofacial cartilage reconstruction, the regenerative cartilage performed highly similar to normal cartilage, and the test of AGA and type II collagen content also proved the cartilage property of the neo-cartilage. However, stem cell reconstruction of the auricle is still in the initial stage of animal experiments, transplantation with such scaffolds in large animals is still lacking, and there is still a long way to go.
Collapse
Affiliation(s)
- Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Seunggi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Humphries S, Joshi A, Webb WR, Kanegaonkar R. Auricular reconstruction: where are we now? A critical literature review. Eur Arch Otorhinolaryngol 2021; 279:541-556. [PMID: 34076725 DOI: 10.1007/s00405-021-06903-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Deformities of the external ear can affect psychosocial well-being and hearing. Current gold-standard reconstructive treatment is autologous costal cartilage grafting despite the vast morbidity profile. Tissue engineering using stem cells and 3D printing can create patient-specific reconstructed auricles with superior cosmetic outcomes and reduced morbidity. This review critically analyses recent and breakthrough research in the field of regenerative medicine for the pinna, considering gaps in current literature and suggesting further steps to identify whether this could be the new gold-standard. METHODS A literature review was conducted. PubMed (MEDLINE) and Cochrane databases were searched using key terms regenerative medicine, tissue engineering, 3D printing, biofabrication, auricular reconstruction, auricular cartilage, chondrocyte, outer ear and pinna. Studies in which tissue-engineered auricles were implanted into animal or human subjects were included. Exclusion criteria included articles not in English and not published within the last ten years. Titles, abstracts and full texts were screened. Reference searching was conducted and significant breakthrough studies included. RESULTS 8 studies, 6 animal and 2 human, were selected for inclusion. Strengths and weaknesses of each are discussed. Common limitations include a lack of human studies, small sample sizes and short follow-up times. CONCLUSION Regenerative medicine holds significant potential to improve auricular reconstruction. To date there are no large multi-centred human studies in which tissue-engineered auricles have been implanted. However, recent human studies suggest promising results, raising the ever-growing possibility that tissue engineering is the future of auricular reconstruction. We aim to continue developing knowledge in this field.
Collapse
Affiliation(s)
- Sarah Humphries
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK.
| | - Anil Joshi
- Facial Plastics, University Hospital Lewisham, Lewisham, UK
| | - William Richard Webb
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK
| | - Rahul Kanegaonkar
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK
| |
Collapse
|
4
|
Izzi V, Koivunen J, Rappu P, Heino J, Pihlajaniemi T. Integration of Matrisome Omics: Towards System Biology of the Tumor Matrisome. EXTRACELLULAR MATRIX OMICS 2020. [DOI: 10.1007/978-3-030-58330-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63:417-432. [DOI: 10.1042/ebc20190001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins that constitutes the scaffold of multicellular organisms. In addition to providing architectural and mechanical support to the surrounding cells, it conveys biochemical signals that regulate cellular processes including proliferation and survival, fate determination, and cell migration. Defects in ECM protein assembly, decreased ECM protein production or, on the contrary, excessive ECM accumulation, have been linked to many pathologies including cardiovascular and skeletal diseases, cancers, and fibrosis. The ECM thus represents a potential reservoir of prognostic biomarkers and therapeutic targets. However, our understanding of the global protein composition of the ECM and how it changes during pathological processes has remained limited until recently.
In this mini-review, we provide an overview of the latest methodological advances in sample preparation and mass spectrometry-based proteomics that have permitted the profiling of the ECM of now dozens of normal and diseased tissues, including tumors and fibrotic lesions.
Collapse
|
6
|
Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis. Cells 2019; 8:cells8090990. [PMID: 31462003 PMCID: PMC6769780 DOI: 10.3390/cells8090990] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components including cartilage, joint capsule, bone and bone marrow, and ligaments. Particularly intraarticular ligaments, which connect the articulating bones such as the anterior cruciate ligament (ACL) and meniscotibial ligaments, fixing the fibrocartilaginous menisci to the tibial bone, are prone to the inflamed joint milieu in OA. However, the pathogenesis of ligament degeneration on the cellular level, most likely triggered by OA associated inflammation, remains poorly understood. Hence, this review sheds light into the intimate interrelation between ligament degeneration, synovitis, joint cartilage degradation, and dysbalanced subchondral bone remodeling. Various features of ligament degeneration accompanying joint cartilage degradation have been reported including chondroid metaplasia, cyst formation, heterotopic ossification, and mucoid and fatty degenerations. The entheses of ligaments, fixing ligaments to the subchondral bone, possibly influence the localization of subchondral bone lesions. The transforming growth factor (TGF)β/bone morphogenetic (BMP) pathway could present a link between degeneration of the osteochondral unit and ligaments with misrouted stem cell differentiation as one likely reason for ligament degeneration, but less studied pathways such as complement activation could also contribute to inflammation. Facilitation of OA progression by changed biomechanics of degenerated ligaments should be addressed in more detail in the future.
Collapse
|