1
|
Huang R, Shi J, Wei R, Li J. Challenges of insulin-like growth factor-1 testing. Crit Rev Clin Lab Sci 2024; 61:388-403. [PMID: 38323343 DOI: 10.1080/10408363.2024.2306804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
Insulin-like growth factor 1 (IGF-1), primarily synthesized in the liver, was initially discovered due to its capacity to replicate the metabolic effects of insulin. Subsequently, it emerged as a key regulator of the actions of growth hormone (GH), managing critical processes like cell proliferation, differentiation, and apoptosis. Notably, IGF-1 displays a longer half-life compared to GH, making it less susceptible to factors that may affect GH concentrations. Consequently, the measurement of IGF-1 proves to be more specific and sensitive when diagnosing conditions such as acromegaly or GH deficiency. The recognition of the existence of IGFBPs and their potential to interfere with IGF-1 immunoassays urged the implementation of various techniques to moderate this issue and provide accurate IGF-1 results. Additionally, in response to the limitations associated with IGF-1 immunoassays and the occurrence of discordant IGF-1 results, modern mass spectrometric methods were developed to facilitate the quantification of IGF-1 levels. Taking advantage of their ability to minimize the interference caused by IGF-1 variants, mass spectrometric methods offer the capacity to deliver robust, reliable, and accurate IGF-1 results, relying on the precision of mass measurements. This also enables the potential detection of pathogenic mutations through protein sequence analysis. However, despite the analytical challenges, the discordance in IGF-1 reference intervals can be attributed to a multitude of factors, potentially leading to distinct interpretations of results. The establishment of reference intervals for each assay is a demanding task, and it requires nationwide multicenter collaboration among laboratorians, clinicians, and assay manufacturers to achieve this common goal in a cost-effective and resource-efficient manner. In this comprehensive review, we examine the challenges associated with the standardization of IGF-1 measurement methods, the minimization of pre-analytical factors, and the harmonization of reference intervals. Particular emphasis will be placed on the development of IGF-1 measurement techniques using "top-down" or "bottom-up" mass spectrometric methods.
Collapse
Affiliation(s)
- Rongrong Huang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Harris Health System Ben Taub Hospital, Houston, TX, USA
| | - Junyan Shi
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver Coastal Health, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruhan Wei
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jieli Li
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Motorykin I, Mu J, Miller BS, Li A, Clarke NJ, McPhaul MJ, Wu Z. Detection rate of IGF-1 variants and their implication to protein binding: study of over 240,000 patients. Clin Chem Lab Med 2024; 62:484-492. [PMID: 37811857 DOI: 10.1515/cclm-2023-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To determine the detection rate of IGF-1 variants in a clinical population and assess their implications. METHODS IGF-1 variants were detected based on their predicted mass-to-charge ratios. Most variants were distinguished by their isotopic distribution and relative retention times. A67T and A70T were distinguished with MS/MS. Patient specimens with a detected variant were de-identified for DNA sequencing to confirm the polymorphism. RESULTS Of the 243,808 patients screened, 1,099 patients containing IGF-1 variants were identified (0.45 %, or 4,508 occurrences per million). Seven patients were identified as homozygous or double heterozygous. Majority of variants (98 %) had amino acid substitutions located at the C-terminus (A62T, P66A, A67S, A67V, A67T, A70T). Isobaric variants A38V and A67V were detected more frequently in children than in adults. Six previously unreported variants were identified: Y31H, S33P, T41I, R50Q, R56K, and A62T. Compared with the overall population, z-score distribution of patients with IGF-1 variants was shifted toward negative levels (median z-score -1.4); however, it resembled the overall population when corrected for heterozygosity. Chromatographic peak area of some variants differed from that of the WT IGF-1 present in the same patient. CONCLUSIONS In the IGF-1 test reports by LC-MS, the concentrations only account for half the total IGF-1 for patients with heterozygous IGF-1 variants. An IGF-1 variant may change the binding to its receptor and/or its binding proteins, affecting its activity and half-life in circulation. Variants located in or close to the C-domain may be pathogenic. Cross-species sequence comparison indicates that A38V and A70T may have some degree of pathogenicity.
Collapse
Affiliation(s)
- Ievgen Motorykin
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Jianying Mu
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Bradley S Miller
- University of Minnesota Medical School, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN, USA
| | - Allison Li
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Nigel J Clarke
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | | | - Zengru Wu
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| |
Collapse
|
3
|
Maleki F, Rashidi MR, Razmi H, Ghorbani M. Label-free electrochemical immunosensor for detection of insulin-like growth factor-1 (IGF-1) using a specific monoclonal receptor on electrospun Zein-based nanofibers/rGO-modified electrode. Talanta 2023; 265:124844. [PMID: 37352780 DOI: 10.1016/j.talanta.2023.124844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
A novel electrochemical immunosensor was developed for ultrasensitive determination of the hormone insulin-like growth factor 1 (IGF-1) based on immobilization of a specific monoclonal antibody on the electrospun nanofibers of Polyacrylonitrile (PAN)/Zein-reduced graphene oxide (rGO) nanoparticle. The nanofibers deposited on glassy carbon electrode (GCE) showed good electrochemical behaviors with synergistic effects between PAN, Zein, and rGO. PAN/Zein nanofibers were used due to flexibility, high porosity, good mechanical strength, high specific surface area, and flexible structures, while rGO nanoparticles were used to improve the detection sensitivity and anti-IGF-1 immobilizing. Different characterization techniques were applied consisting of FE-SEM, FT-IR, and EDS for the investigation of morphological features and nanofiber size. The redox reactions of [Fe(CN)6]4-/3- on the modified electrode surface were probed for studying the immobilization and determination processes, using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Under optimal conditions, LOD (limit of detection) and LOQ (limit of quantification) were obtained as 55.72 fg/mL and 185.73 fg/mL respectively, and sensitivity was acquired 136.29 μA/cm2.dec. Moreover, a wide linear range was obtained ranging from 1 pg/mL to 10 ng/mL for IGF-1. Furthermore, the proposed method was applied for the analysis of IGF-1 in several human plasma samples with acceptable results, and it also exhibited high selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Larkey NE, Fatica EM, Singh RJ. Differentiation of Common IGF-1 Variants Using HRMS COM Determination with Follow-Up MS/MS Verification. Methods Mol Biol 2022; 2546:227-237. [PMID: 36127593 DOI: 10.1007/978-1-0716-2565-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor 1 (IGF-1), a peptide hormone regulator of growth hormone (GH), has common variants with differing functionality. These variants are a result of single amino acid changes in the peptide that can lead to significant changes in the resulting protein. The standard method of evaluating any of these variants is by using tandem mass spectrometry (MS/MS) methods. A novel method has been developed to evaluate some variants solely by high-resolution mass spectrometry (HRMS) of the intact peptide by calculating the center of mass (COM) of the [M + 7H]+7 isotopic distribution. This has allowed differentiation between the nonfunctional V44M variant and the A67T/A70T functional variants without the need for MS/MS. However, MS/MS is still needed to differentiate between the A67T and A70T variants. In this chapter we outline the LC-HRMS method for IGF-1 analysis with the inclusion of COM calculations and subsequent MS/MS differentiation.
Collapse
Affiliation(s)
- Nicholas E Larkey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erica M Fatica
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Motorykin I, Li A, Wu Z. Monitoring and Identifying Insulin-Like Growth Factor 1 Variants by Liquid Chromatography-High-Resolution Mass Spectrometry in a Clinical Laboratory. Methods Mol Biol 2022; 2546:239-251. [PMID: 36127594 DOI: 10.1007/978-1-0716-2565-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein and peptide hormones often exist as sequence variants with different molecular mass. Monitoring these variants of different molecular mass by mass spectrometry using mass-to-charge (m/z) ratio that is indicative of the wild type may lead to inaccurate quantitative results. However, liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based techniques can capture these differences and provide an opportunity to resolve, or partially resolve, variant complexity. In this chapter, we describe a general approach for monitoring a set of peptide variants with similar m/z ratios and isotopic envelopes, but different in amino acid sequences. As an example, we use insulin-like growth factor-1 (IGF-1) to demonstrate a DNA database-guided approach to monitor protein variants by LC-HRMS in a clinical laboratory. The workflow is automated and therefore avoids manual calculations that are prone to human error. The method can also monitor multiple IGF-1 variants and discover new ones. It can also provide a profile of a patient's IGF-1 status and be used to explore genotype-phenotype relationships in IGF-1 variants.
Collapse
Affiliation(s)
| | - Allison Li
- Quest Diagnostics, San Juan Capistrano, CA, USA
| | - Zengru Wu
- Quest Diagnostics, San Juan Capistrano, CA, USA.
| |
Collapse
|
6
|
Maus A, Renuse S, Kemp J, Madugundu AK, Vanderboom PM, Blommel J, Jerde C, Dasari S, Kipp BR, Singh RJ, Grebe SK, Pandey A. Targeted Detection of SARS-CoV-2 Nucleocapsid Sequence Variants by Mass Spectrometric Analysis of Tryptic Peptides. J Proteome Res 2022; 21:142-150. [PMID: 34779632 PMCID: PMC8610007 DOI: 10.1021/acs.jproteome.1c00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/24/2022]
Abstract
COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.
Collapse
Affiliation(s)
- Anthony Maus
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Santosh Renuse
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jennifer Kemp
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Anil K. Madugundu
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International Technology
Park, Bangalore 560066, Karnataka, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Patrick M. Vanderboom
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Joseph Blommel
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Calvin Jerde
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Surendra Dasari
- Division
of Biomedical Statistics and Informatics, Department of Health Sciences
Research, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin R. Kipp
- Department
of Laboratory Medicine and Pathology, Division of Laboratory Genetics
and Genomics, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ravinder J. Singh
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Stefan K. Grebe
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Akhilesh Pandey
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
7
|
Motorykin I, Li H, Clarke NJ, McPhaul MJ, Wu Z. Isotopic Peak Index, Relative Retention Time, and Tandem MS for Automated High Throughput IGF-1 Variants Identification in a Clinical Laboratory. Anal Chem 2021; 93:11836-11842. [PMID: 34461729 DOI: 10.1021/acs.analchem.1c02566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring insulin-like growth factor-1 (IGF-1) is useful for assessing and managing growth-related disorders, such as acromegaly and growth hormone deficiency. High-resolution liquid chromatography-mass spectrometry (LC-MS) is used for measuring IGF-1 due to its molecular specificity, quantitative performance, well-characterized reference materials, and detailed age/sex-specific reference intervals. However, polymorphisms in the IGF1 gene may cause mass shifts in the polypeptide, which can impede quantitation and cause errors in clinical interpretation. We (1) developed a concept of "isotopic peak index", which allows simultaneous monitoring of 15 IGF-1 variants by using only four m/z ratios; (2) developed a "relative retention time" parameter that allows distinction of previously unresolved variants; and (3) utilized tandem mass spectrometry (MS/MS) to distinguish between the most common pair of variants: isobaric A67T and A70T. All methods were validated with DNA sequencing. This approach identified six variants from the ExAC database, P66A, A67S, S34N, A38 V, A67T, and A70T; two previously reported V44M and A67V variants; and discovered six unreported variants, Y31H, S33P, R50Q, R56K, T41I, and A62T. Major improvements in our workflow include enhanced automation, avoiding detailed manual calculations that are prone to human error, and the ability to monitor more, and discover new, IGF-1 variants. The workflow provides a profile of a patient's IGF-1 status and can be used to explore genotype-phenotype relationships in IGF-1 variants.
Collapse
Affiliation(s)
- Ievgen Motorykin
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Hua Li
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Nigel J Clarke
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Michael J McPhaul
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Zengru Wu
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| |
Collapse
|
8
|
A high-throughput assay for the quantification of intact Insulin-like Growth Factor I in human serum using online SPE-LC-HRMS. Clin Chim Acta 2020; 510:391-399. [DOI: 10.1016/j.cca.2020.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
|
9
|
Norris Bradley M, Shuford CM, Holland PL, Levandoski M, Grant RP. Quality over quantity: A qualitative, targeted bottom-up proteomics approach to genotyping apolipoprotein L1. Clin Biochem 2020; 82:58-65. [DOI: 10.1016/j.clinbiochem.2020.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
|