1
|
Choi WI, Park I, An JS, Kim DY, Koh M, Jang I, Kim DS, Kang YS, Shim Y. Controlling Gas Generation of Li-Ion Battery through Divinyl Sulfone Electrolyte Additive. Int J Mol Sci 2022; 23:ijms23137328. [PMID: 35806333 PMCID: PMC9267101 DOI: 10.3390/ijms23137328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The focus of mainstream lithium-ion battery (LIB) research is on increasing the battery’s capacity and performance; however, more effort should be invested in LIB safety for widespread use. One aspect of major concern for LIB cells is the gas generation phenomenon. Following conventional battery engineering practices with electrolyte additives, we examined the potential usage of electrolyte additives to address this specific issue and found a feasible candidate in divinyl sulfone (DVSF). We manufactured four identical battery cells and employed an electrolyte mixture with four different DVSF concentrations (0%, 0.5%, 1.0%, and 2.0%). By measuring the generated gas volume from each battery cell, we demonstrated the potential of DVSF additives as an effective approach for reducing the gas generation in LIB cells. We found that a DVSF concentration of only 1% was necessary to reduce the gas generation by approximately 50% while simultaneously experiencing a negligible impact on the cycle life. To better understand this effect on a molecular level, we examined possible electrochemical reactions through ab initio molecular dynamics (AIMD) based on the density functional theory (DFT). From the electrolyte mixture’s exposure to either an electrochemically reductive or an oxidative environment, we determined the reaction pathways for the generation of CO2 gas and the mechanism by which DVSF additives effectively blocked the gas’s generation. The key reaction was merging DVSF with cyclic carbonates, such as FEC. Therefore, we concluded that DVSF additives could offer a relatively simplistic and effective approach for controlling the gas generation in lithium-ion batteries.
Collapse
Affiliation(s)
- Woon Ih Choi
- Innovation Center, Samsung Electronics, 1 Samsungjeonja-ro, Hwasung 18448, Korea; (W.I.C.); (J.S.A.); (I.J.); (D.S.K.)
| | - Insun Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, 130 Samsung-ro, Suwon 16678, Korea; (I.P.); (D.Y.K.); (M.K.)
| | - Jae Sik An
- Innovation Center, Samsung Electronics, 1 Samsungjeonja-ro, Hwasung 18448, Korea; (W.I.C.); (J.S.A.); (I.J.); (D.S.K.)
| | - Dong Young Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, 130 Samsung-ro, Suwon 16678, Korea; (I.P.); (D.Y.K.); (M.K.)
| | - Meiten Koh
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, 130 Samsung-ro, Suwon 16678, Korea; (I.P.); (D.Y.K.); (M.K.)
| | - Inkook Jang
- Innovation Center, Samsung Electronics, 1 Samsungjeonja-ro, Hwasung 18448, Korea; (W.I.C.); (J.S.A.); (I.J.); (D.S.K.)
| | - Dae Sin Kim
- Innovation Center, Samsung Electronics, 1 Samsungjeonja-ro, Hwasung 18448, Korea; (W.I.C.); (J.S.A.); (I.J.); (D.S.K.)
| | - Yoon-Sok Kang
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, 130 Samsung-ro, Suwon 16678, Korea; (I.P.); (D.Y.K.); (M.K.)
- Correspondence: (Y.-S.K.); (Y.S.)
| | - Youngseon Shim
- Innovation Center, Samsung Electronics, 1 Samsungjeonja-ro, Hwasung 18448, Korea; (W.I.C.); (J.S.A.); (I.J.); (D.S.K.)
- Correspondence: (Y.-S.K.); (Y.S.)
| |
Collapse
|