Tang Q, Zhang Z, Zhang JH, Tang F, Wang C, Cui X. Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge.
MICROMACHINES 2022;
13:2229. [PMID:
36557527 PMCID:
PMC9780946 DOI:
10.3390/mi13122229]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Charged droplets driven by Coulomb force are an important part of a droplet-based micro reactor. In this study, we realized the rapid oscillatory motion of droplets both in oil and on superhydrophobic surface by injecting charges through corona discharge. Distinct from the oscillatory motion of water droplets under a DC electric field, charge injection can make the motion of water droplets more flexible. A droplet in the oil layer can move up and down regularly under the action of corona discharge, and the discharge voltage can control the movement period and height of the droplet. In addition, the left-right translation of droplets on a superhydrophobic surface can be achieved by injecting charges into the hydrophobic film surface through corona discharge. Two kinds of droplet motion behaviors are systematically analyzed, and the mechanism of droplet motion is explained. The present results could help establish new approaches to designing efficient machines in microfluidics and micromechanical equipment.
Collapse