1
|
Stephens NM, Smith EA. Structure of Deep Eutectic Solvents (DESs): What We Know, What We Want to Know, and Why We Need to Know It. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14017-14024. [PMID: 36346803 DOI: 10.1021/acs.langmuir.2c02116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DESs) are a tunable class of solvents with many advantageous properties including good thermal stability, facile synthesis, low vapor pressure, and low-to-negligible toxicity. DESs are composed of hydrogen bond donors and acceptors that, when combined, significantly decrease the freezing point of the resulting solvent. DESs have distinct interfacial and bulk structural heterogeneity compared to traditional solvents, in part due to various intramolecular and intermolecular interactions. Many of the physiochemical properties observed for DESs are influenced by structure. However, our understanding of the interfacial and bulk structure of DESs is incomplete. To fully exploit these solvents in a range of applications including catalysis, separations, and electrochemistry, a better understanding of DES structure must be obtained. In this Perspective, we provide an overview of the current knowledge of the interfacial and bulk structure of DESs and suggest future research directions to improve our understanding of this important information.
Collapse
Affiliation(s)
- Nicole M Stephens
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
2
|
Stephens NM, Masching HP, Walid MKI, Petrich JW, Anderson JL, Smith EA. Temperature-Dependent Constrained Diffusion of Micro-Confined Alkylimidazolium Chloride Ionic Liquids. J Phys Chem B 2022; 126:4324-4333. [PMID: 35649257 DOI: 10.1021/acs.jpcb.2c01588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alkylimidazolium chloride ionic liquids (ILs) have many uses in a variety of separation systems, including micro-confined separation systems. To understand the separation mechanism in these systems, the diffusion properties of analytes in ILs under relevant operating conditions, including micro-confinement dimension and temperature, should be known. For example, separation efficiencies for various IL-based microextraction techniques are dependent on the sample volume and temperature. Temperature-dependent (20-100 °C) fluorescence recovery after photobleaching (FRAP) was utilized to determine the diffusion properties of a zwitterionic, hydrophilic dye, ATTO 647, in alkylimidazolium chloride ILs in micro-confined geometries. These micro-confined geometries were generated by sandwiching the IL between glass substrates that were separated by ∼1 to 100 μm. From the measured temperature-dependent FRAP data, we note alkyl chain length-, thickness-, and temperature-dependent diffusion coefficients, with values ranging from 0.021 to 46 μm2/s. Deviations from Brownian diffusion are observed at lower temperatures and increasingly less so at elevated temperatures; the differences are attributed to alterations in intermolecular interactions that reduce temperature-dependent nanoscale structural heterogeneities. The temperature- and thickness-dependent data provide a useful foundation for efficient design of micro-confined IL separation systems.
Collapse
Affiliation(s)
- Nicole M Stephens
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Hayley P Masching
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Mohammad K I Walid
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Jacob W Petrich
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Jared L Anderson
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
3
|
Zhang S, Baba H, Sakka T, Nishi N. Interfacial Viscosity and Ionic Reorientation Probed Using Electrochemical Surface Plasmon Resonance at the Gold Electrode Interface of Ionic Liquids. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
NISHI N, MINAMI E, SAKKA T. Adsorption Properties of Alkylsulfate Ions at the Ionic Liquid/Water Interfaces: Ionic Liquid Cation Dependence. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naoya NISHI
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Eiji MINAMI
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Tetsuo SAKKA
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
5
|
Kuroyama Y, Nishi N, Sakka T. Electrochemical liquid-liquid interface between oil and ionic liquid for reductive deposition of metal nanostructures. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|