1
|
Matsumoto T, Shimoura N, Aoki N, Takahashi N, Mizuno S, Nishino T. Observation and Control of Single-Component Adhesion Interphase of Polyamide 66 through Confocal Raman Microspectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39723937 DOI: 10.1021/acsami.4c18513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Manufacturing using adhesion technology has attracted much attention. Examples of adhesion include the lay-up of carbon fiber reinforced thermoplastic prepregs and the lamination of food packaging. In single-component adhesion systems, the analysis of the boundary region poses challenges because of the absence of chemical and physical discrimination at the adhesion interphase. Polyamide 66, one of the typical engineering plastics, is widely accepted as a structural material in automobiles and packaging films. Therefore, finer control of adhesion with polyamide 66 is crucial for advancing adhesion manufacturing. In this work, we focused and investigated the interphase of a single-component adhesion system with polyamide 66. For the analyses of single-component polyamide 66 laminates, an adhesion system with nondeuterated and deuterated polyamides was utilized, and their interphase structures were evaluated by confocal Raman microspectroscopy. The interphase region of the adhesion specimens was able to be characterized and evaluated, revealing an expansion to a thickness of several micrometers. The interphase thickness was increased with thermal annealing postlamination, whereas no thickness increase was observed in adhered specimens using the polyamide 66 substrates through thermal crystallization before lamination. The formation of the interphase region can be attributed to the crystal growing and lamella interlocking in the boundary region. Moreover, the larger interphase thickness was strongly associated with an increase in adhesion fracture toughness. These results suggested that the adhesion properties of crystalline substrates were decided by crystallization behavior and the thermal annealing process, even when using the same component adhesion systems.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan
| | - Naoki Shimoura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan
| | - Naho Aoki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan
| | - Naoto Takahashi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan
| | - Shun Mizuno
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan
| |
Collapse
|
2
|
Hu X, Li B, Xu Z, Ma YH, Han X, Hu L, Wang C, Wang N, Xu J, Sheng Z, Lu X. Molecular Structures of Poly(methyl methacrylate) at Different Buried Interfaces Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21291-21300. [PMID: 39316696 DOI: 10.1021/acs.langmuir.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Silica or calcium fluoride (CaF2) substrate-supported poly(methyl methacrylate) (PMMA) thin films as insulating layers are commonly used in photoelectric/photovoltaic devices to improve the efficiency or stability of these devices. However, a comparative investigation of molecular structures at buried PMMA/silica and PMMA/CaF2 interfaces under thermal stimuli remains unexplored. In this study, we qualitatively and quantitatively revealed different molecular orderings and orientations of PMMA at two interfaces before and after annealing using sum frequency generation (SFG) vibrational spectroscopy. SFG vibrations were carefully assigned by using various deuterated PMMAs. SFG results indicated that, at the buried PMMA/silica interface, the side OCH3 groups were prone to lie down before annealing and tended to stand up after annealing. In contrast, the case was the opposite at the buried PMMA/CaF2 interface. The relative hydrophobicity/hydrophilicity of the two substrates and the developed hydrogen bonds upon annealing at the buried PMMA/silica interface, which is absent at the CaF2 surface, are believed to be the driving forces for different interfacial molecular structures. This study benefits the molecular-level understanding of the interfacial local structural relaxation of polymers at buried interfaces and the rational design of photoelectric/photovoltaic devices from the molecular level.
Collapse
Affiliation(s)
- Xintong Hu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Bolin Li
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhaohui Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Linhua Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ningfang Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jinsheng Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhigao Sheng
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Rossi D, Wu Y, Dong Y, Paradkar R, Chen X, Kuo TC, Chen Z. Correlations between adhesion and molecular interactions at buried interfaces of model polymer systems and in commercial multilayer barrier films. J Chem Phys 2024; 161:124710. [PMID: 39324534 DOI: 10.1063/5.0232449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Sum frequency generation vibrational spectroscopy (SFG) was applied to characterize the interfacial adhesion chemistry at several buried polymer interfaces in both model systems and blown multilayer films. Anhydride/acid modified polyolefins are used as tie layers to bond dissimilar polymers in multilayer barrier structures. In these films, the interfacial reactions between the barrier polymers, such as ethylene vinyl alcohol (EVOH) or nylon, and the grafted anhydrides/acids provide covalent linkages that enhance adhesion. However, the bonding strengths vary for different polymer-tie layer combinations. Here, using SFG, we aim to provide a systematic study on four common polymer-tie interfaces, including EVOH/polypropylene-tie, EVOH/polyethylene-tie, nylon/polypropylene-tie, and nylon/polyethylene-tie, to understand how the adhesion chemistry varies and its impact on the measured adhesion. Our SFG studies suggest that adhesion enhancement is driven by a combination of reaction kinetics and the interfacial enrichment of the anhydride/acid, resulting in stronger adhesion in the case of nylon. This observation matches well with the higher adhesion observed in the nylon/tie systems in both lap shear and peel test measurements. In addition, in the polypropylene-tie systems, grafted oligomers due to chain scission may migrate to the interface, affecting the adhesion. These by-products can react or interfere with the barrier-tie chemistry, resulting in reduced adhesion strength in the polypropylene-tie system.
Collapse
Affiliation(s)
- Daniel Rossi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yifan Dong
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, USA
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, USA
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, USA
| | - Tzu-Chi Kuo
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
4
|
Rossi D, Dong Y, Paradkar R, Chen X, Wu Y, Mohler C, Kuo TC, Chen Z. Quantifying Chemical Reactions and Interfacial Properties at Buried Polymer/Polymer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12689-12696. [PMID: 38842226 DOI: 10.1021/acs.langmuir.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Maleic anhydride (MAH)-modified polymers are used as tie layers for binding dissimilar polymers in multilayer polymer films. The MAH chemistry which promotes adhesion is well characterized in the bulk; however, only recently has the interfacial chemistry been studied. Sum frequency generation vibrational spectroscopy (SFG) is an interfacial spectroscopy technique which provides detailed information on interfacial chemical reactions, species, and molecular orientations and has been essential for characterizing the MAH chemistry in both nylon and ethyl vinyl alcohol copolymer (EVOH) model systems and coextruded multilayer films. Here, we further characterize the interfacial chemistry between MAH-modified polyethylene tie layers and both EVOH and nylon by investigating the model systems over a range of MAH concentrations. We can detect the interfacial chemical reaction products between MAH and the barrier layer at MAH concentrations of ≥0.022 wt % for nylon and ≥0.077 wt % for EVOH. Additionally, from the concentration-dependent reaction reactant/product SFG peak positions and the product imide or ester/acid C═O group tilt angles extracted from the polarization-dependent SFG spectra, we quantitatively observe concentration-dependent changes to both the interfacial chemistry and interfacial structure. The interfacial chemistry and molecular orientation as a function of MAH concentration are well correlated with the adhesion strength, providing important quantitative information for the future design of MAH-modified tie layers for a variety of important applications.
Collapse
Affiliation(s)
- Daniel Rossi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Dong
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Yuchen Wu
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Tzu-Chi Kuo
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Labrague G, Gomez F, Chen Z. Characterization of Buried Interfaces of Silicone Materials in Situ to Understand Their Fouling-Release, Antifouling, and Adhesion Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9345-9361. [PMID: 38669686 DOI: 10.1021/acs.langmuir.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Poly(dimethylsiloxane) (PDMS) has numerous excellent properties and is extensively used as the main component of many silicone products in a variety of research fields and practical applications such as biomedical materials, aviation, construction, electronic devices, and automobiles. Interfacial structures of PDMS and other components in silicone systems are important for such research and applications. It is difficult to probe interfacial molecular structures of buried solid-liquid and solid-solid interfaces of silicone materials due to the lack of appropriate analytical tools. In this feature article, we presented our research on elucidating the molecular structures of PDMS as well as other additives in silicone samples at buried interfaces in situ at the molecular level using a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy. SFG was applied to study various PDMS surfaces in liquid environments to understand their fouling-release and antifouling activities. SFG has also been used to study buried solid-solid interfaces between silicone adhesives and polymers, elucidating the molecular adhesion mechanisms. Our SFG studies provide important knowledge on interfacial structure-function relationships of silicone materials, helping the design and development of silicone materials with improved properties through optimization of silicone interfacial structures.
Collapse
Affiliation(s)
- Gladwin Labrague
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fernando Gomez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Gao J, Khan MR, Wu Y, Hawker DD, Gutowski KE, Konradi R, Mayr L, Hankett JM, Kellermeier M, Chen Z. Probing Interfacial Behavior and Antifouling Activity of Adsorbed Copolymers at Solid/Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4557-4570. [PMID: 36947877 DOI: 10.1021/acs.langmuir.2c03056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymers containing poly(ethylene glycol) (PEG) units can exhibit excellent antifouling properties, which have been proposed/used for coating of biomedical implants, separation membranes, and structures in marine environments, as well as active ingredients in detergent formulations to avoid soil redepositioning in textile laundry. This study aimed to elucidate the molecular behavior of a copolymer poly(MMA-co-MPEGMA) containing antiadhesive PEG side chains and a backbone of poly(methyl methacrylate), at a buried polymer/solution interface. Polyethylene terephthalate (PET) was used as a substrate to model polyester textile surfaces. Sum frequency generation (SFG) vibrational spectroscopy was applied to examine the interfacial behavior of the copolymer at PET/solution interfaces in situ and in real time. Complementarily, copolymer adsorption on PET and subsequent antiadhesion against protein foulants were probed by quartz-crystal microbalance experiments with dissipation monitoring (QCM-D). Both applied techniques show that poly(MMA-co-MPEGMA) adsorbs significantly to the PET/solution interface at bulk polymer solution concentrations as low as 2 ppm, while saturation of the surface was reached at 20 ppm. The hydrophobic MMA segments provide an anchor for the copolymer to bind onto PET in an ordered way, while the pendant PEG segments are more disordered but contain ordered interfacial water. In the presence of considerable amounts of dissolved surfactants, poly(MMA-co-MPEGMA) could still effectively adsorb on the PET surface and remained stable at the surface upon washing with hot and cold water or surfactant solution. In addition, it was found that adsorbed poly(MMA-co-MPEGMA) provided the PET surface with antiadhesive properties and could prevent protein deposition, highlighting the superior surface affinity and antifouling performance of the copolymer. The results obtained in this work demonstrate that amphiphilic copolymers containing PMMA anchors and PEG side chains can be used in detergent formulations to modify polyester surfaces during laundry and reduce deposition of proteins (and likely also other soils) on the textile.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Md Rubel Khan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dustin D Hawker
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Keith E Gutowski
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Rupert Konradi
- Biointerfaces & Delivery Systems, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Lukas Mayr
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Jeanne M Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Matthias Kellermeier
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Lin T, Wu Y, Santos E, Chen X, Kelleher-Ferguson J, Tucker C, Ahn D, Mohler C, Chen Z. Probing Covalent Interactions at a Silicone Adhesive/Nylon Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2590-2600. [PMID: 35166546 DOI: 10.1021/acs.langmuir.1c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent bonding is one of the most robust forms of intramolecular interaction between adhesives and substrates. In contrast to most noncovalent interactions, covalent bonds can significantly enhance both the interfacial strength and durability. To utilize the advantages of covalent bonding, specific chemical reactions are designed to occur at interfaces. However, interfacial reactions are difficult to probe in situ, particularly at the buried interfaces found in well-bonded adhesive joints. In this work, sum frequency generational (SFG) vibrational spectroscopy was used to directly examine and analyze the interfacial chemical reactions and related molecular changes at buried nylon/silicone elastomer interfaces. For self-priming elastomeric silicone adhesives, silane coupling agents have been extensively used as adhesion promoters. Here with SFG, the interfacial chemical reactions between nylon and two alkoxysilane adhesion promoters with varied functionalities (maleic anhydride (MAH) and epoxy) formulated into the silicone were observed and investigated. Evidence of reactions between the organofunctional group of each silane and reactive groups on the polyamide was found at the buried interface between the cured silicone elastomer and nylon. The adhesion strength at the nylon/cured silicone interfaces was substantially enhanced with both silane additives. SFG results elucidated the mechanisms of organo-silane adhesion promotion for silicone at the molecular level. The ability to probe and analyze detailed interfacial reactions at buried nylon/silicone interfaces demonstrated that SFG is a powerful analytical technique to aid the design and optimization of materials with desired interfacial properties.
Collapse
Affiliation(s)
| | | | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - Chris Tucker
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | |
Collapse
|
8
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Wang J, Wloch G, Lin T, Chen Z. Investigating Thin Silicone Oil Films Using Four-Wave Mixing Spectroscopy and Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14540-14549. [PMID: 34843652 DOI: 10.1021/acs.langmuir.1c02737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article applies four-wave mixing (FWM) spectroscopy, a third-order nonlinear optical spectroscopic technique which is not intrinsically surface- or interface-sensitive, to study silicone oil thin films, supplemented by second-order nonlinear-optical sum frequency generation (SFG) vibrational spectroscopy. Although studies of thin organic films using coherent antistokes Raman spectroscopy (CARS), a special case of FWM, have been reported previously, in this study we demonstrate the feasibility of using a more general FWM process which involves three independent excitation laser beams to investigate silicone oil thin films. The results show that the FWM method has the potential to detect and provide molecular-level information on ultrathin silicone oil layers, down to a film thickness of 1 nm. This developed FWM methodology is widely applicable and can be utilized to study important issues in the biopharmaceutical field, e.g., to examine the distribution of silicone oil on syringe glass surfaces with subnanometer sensitivity. It can also be used to study the potentially slow reactions between silicone oil and glass surfaces as proposed in the literature but without direct molecular-level information.
Collapse
Affiliation(s)
- Jie Wang
- Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gene Wloch
- Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | | |
Collapse
|
10
|
Zhang S, Hsu L, Toolis A, Li B, Zhou J, Lin T, Chen Z. Investigation of the Atmospheric Moisture Effect on the Molecular Behavior of an Isocyanate-Based Primer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12705-12713. [PMID: 34668715 DOI: 10.1021/acs.langmuir.1c02135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A primer coating is engineered to facilitate compatibility between products like adhesives, sealants, and potting compounds and targeted substrates. Prolonged exposure of isocyanate-based primer surfaces to the environment is known to negatively affect the interfacial adhesion between itself and the products subsequently applied on top of it. However, the molecular behavior behind this observed phenomenon remained to be further investigated. In this study, sum frequency generation (SFG) vibrational spectroscopy, a nonlinear optical spectroscopic technique, was applied to study the surface of an isocyanate-based primer exposed to different environments at the molecular level. Atmospheric moisture was considered to be a potential factor in impairing the adhesion performance of the primer, and thus, time- and humidity-dependent experiments were executed to monitor the molecular behavior at the primer surface using SFG. In addition, 180° peel testing experiments were conducted to measure the adhesion properties of primers after being exposed to the corresponding conditions to correlate to SFG results and establish a chemical structure-macroscopic performance relationship. This study on the changes at the primer surface in different environments with varied humidity levels as a function of time aims to provide an in-depth understanding of the moisture effect on isocyanate-based primers. These learnings may also be helpful toward exploring a broader range of coatings and surface layers and improving customer product use guidelines.
Collapse
Affiliation(s)
| | - Lorraine Hsu
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Amy Toolis
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | | | | | | | | |
Collapse
|
11
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Matsumoto T, Shimizu Y, Nishino T. Analyses of the Adhesion Interphase of Isotactic Polypropylene Using Hot-Melt Polyolefin Adhesives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Yosuke Shimizu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Andre JS, Li B, Chen X, Paradkar R, Walther B, Feng C, Tucker C, Mohler C, Chen Z. Interfacial reaction of a maleic anhydride grafted polyolefin with ethylene vinyl alcohol copolymer at the buried solid/solid interface. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Li B, Andre JS, Chen X, Walther B, Paradkar R, Feng C, Tucker C, Mohler C, Chen Z. Observing a Chemical Reaction at a Buried Solid/Solid Interface in Situ. Anal Chem 2020; 92:14145-14152. [DOI: 10.1021/acs.analchem.0c03228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bolin Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John S. Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoyun Chen
- Core R&D,The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Brian Walther
- Packaging and Specialty Plastics,The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics,The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Chuang Feng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher Tucker
- Core R&D,The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carol Mohler
- Core R&D,The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|