1
|
Ikeda T, Kobayashi Y, Yamakawa M. Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear. J Chem Phys 2024; 161:024901. [PMID: 38973760 DOI: 10.1063/5.0216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Patchy nanocubes are intriguing materials with simple shapes and space-filling and multidirectional bonding properties. Previous studies have revealed various mesoscopic structures such as colloidal crystals in the solid regime and rod-like or fractal-like aggregates in the liquid regime of the phase diagram. Recent studies have also shown that mesoscopic structural properties, such as an average cluster size M and orientational order, in amphiphilic nanocube suspensions are associated with macroscopic viscosity changes, mainly owing to differences in cluster shape among patch arrangements. Although many studies have been conducted on the self-assembled structures of nanocubes in bulk, little is known about their self-assembly in nanoscale spaces or structural changes under shear. In this study, we investigated mixtures of one- and two-patch amphiphilic nanocubes confined in two flat parallel plates at rest and under shear using molecular dynamics simulations coupled with multiparticle collision dynamics. We considered two different patch arrangements for the two-patch particles and two different slit widths H to determine the degree of confinement in constant volume fractions in the liquid regime of the phase diagram. We revealed two unique cluster morphologies that have not been previously observed under bulk conditions. At rest, the size of the rod-like aggregates increased with decreasing H, whereas that of the fractal-like aggregates remained constant. Under weak shear with strong confinement, the rod-like aggregates maintained a larger M than the fractal-like aggregates, which were more rigid and maintained a larger M than the rod-like aggregates under bulk conditions.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusei Kobayashi
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masashi Yamakawa
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
Wani YM, Kovakas PG, Nikoubashman A, Howard MP. Mesoscale simulations of diffusion and sedimentation in shape-anisotropic nanoparticle suspensions. SOFT MATTER 2024; 20:3942-3953. [PMID: 38669202 DOI: 10.1039/d4sm00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
We determine the long-time self-diffusion coefficient and sedimentation coefficient for suspensions of nanoparticles with anisotropic shapes (octahedra, cubes, tetrahedra, and spherocylinders) as a function of nanoparticle concentration using mesoscale simulations. We use a discrete particle model for the nanoparticles, and we account for solvent-mediated hydrodynamic interactions between nanoparticles using the multiparticle collision dynamics method. Our simulations are compared to theoretical predictions and experimental data from existing literature, demonstrating good agreement in the majority of cases. Further, we find that the self-diffusion coefficient of the regular polyhedral shapes can be estimated from that of a sphere whose diameter is the average of their inscribed and circumscribed sphere diameters.
Collapse
Affiliation(s)
- Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | | | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA.
| |
Collapse
|
3
|
Yokoyama T, Kobayashi Y, Arai N, Nikoubashman A. Aggregation of amphiphilic nanocubes in equilibrium and under shear. SOFT MATTER 2023; 19:6480-6489. [PMID: 37575055 DOI: 10.1039/d3sm00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We investigate the self-assembly of amphiphilic nanocubes into finite-sized aggregates in equilibrium and under shear, using molecular dynamics (MD) simulations and kinetic Monte Carlo (KMC) calculations. These patchy nanoparticles combine both interaction and shape anisotropy, making them valuable models for studying folded proteins and DNA-functionalized nanoparticles. The nanocubes can self-assemble into various finite-sized aggregates ranging from rods to self-avoiding random walks, depending on the number and placement of the hydrophobic faces. Our study focuses on suspensions containing multi- and one-patch cubes, with their ratio systematically varied. When the binding energy is comparable to the thermal energy, the aggregates consist of only few cubes that spontaneously associate/dissociate. However, highly stable aggregates emerge when the binding energy exceeds the thermal energy. Generally, the mean aggregation number of the self-assembled clusters increases with the number of hydrophobic faces and decreases with increasing fraction of one-patch cubes. In sheared suspensions, the more frequent collisions between nanocube clusters lead to faster aggregation dynamics but also to smaller terminal steady-state mean cluster sizes. The results from the MD and KMC simulations are in excellent agreement for all investigated two-patch cases, whereas the three-patch cubes form systematically smaller clusters in the MD simulations compared to the KMC calculations due to finite-size effects and slow aggregation kinetics. By analyzing the rate kernels, we are able to identify the primary mechanisms responsible for (shear-induced) cluster growth and breakup. This understanding allows us to tune nanoparticle and process parameters to achieve desired cluster sizes and shapes.
Collapse
Affiliation(s)
- Takahiro Yokoyama
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan.
| | - Yusei Kobayashi
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan.
| | - Arash Nikoubashman
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan.
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
4
|
Kobayashi Y, Nikoubashman A. Self-Assembly of Amphiphilic Cubes in Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10642-10648. [PMID: 35972298 DOI: 10.1021/acs.langmuir.2c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the self-assembly of amphiphilic cubic colloids using molecular dynamics as well as rejection-free kinetic Monte Carlo simulations. We vary both the number and location of the solvophobic faces (patches) on the cubes at several colloid volume fractions and determine the resulting size and shape distributions of the self-assembled aggregates. When the binding energy is comparable to the thermal energy of the system, aggregates typically consist of only few spontaneously associating/dissociating colloids. Increasing the binding energy (or lowering the temperature) leads to the emergence of highly stable aggregates, e.g., small dimers in pure suspensions of one-patch cubes or large (system-spanning) aggregates in suspensions of multipatch colloids. In mixtures of one- and multipatch cubes, the average aggregation number increases with increasing number of solvophobic faces on the multipatch cubes as well with increasing fraction of multipatch cubes. The resulting aggregate shapes range from elongated rods over fractal objects to compact spheres, depending on the number and arrangement of solvophobic patches on the cubic colloids. Our findings establish the complex self-assembly pathways for a class of building blocks that combine both interaction and shape anisotropy, with the potential of forming hierarchically ordered superstructures.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan
| | - Arash Nikoubashman
- Department of Mechanical Engineering, Keio University, 223-8522 Yokohama, Japan
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
5
|
Wani YM, Kovakas PG, Nikoubashman A, Howard MP. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model. J Chem Phys 2022; 156:024901. [PMID: 35032985 DOI: 10.1063/5.0075002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study self-diffusion and sedimentation in colloidal suspensions of nearly hard spheres using the multiparticle collision dynamics simulation method for the solvent with a discrete mesh model for the colloidal particles (MD+MPCD). We cover colloid volume fractions from 0.01 to 0.40 and compare the MD+MPCD simulations to experimental data and Brownian dynamics simulations with free-draining hydrodynamics (BD) as well as pairwise far-field hydrodynamics described using the Rotne-Prager-Yamakawa mobility tensor (BD+RPY). The dynamics in MD+MPCD suggest that the colloidal particles are only partially coupled to the solvent at short times. However, the long-time self-diffusion coefficient in MD+MPCD is comparable to that in experiments, and the sedimentation coefficient in MD+MPCD is in good agreement with that in experiments and BD+RPY, suggesting that MD+MPCD gives a reasonable description of hydrodynamic interactions in colloidal suspensions. The discrete-particle MD+MPCD approach is convenient and readily extended to more complex shapes, and we determine the long-time self-diffusion coefficient in suspensions of nearly hard cubes to demonstrate its generality.
Collapse
Affiliation(s)
- Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | | | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| |
Collapse
|