1
|
Cloyd AK, Boone K, Ye Q, Snead ML, Spencer P, Tamerler C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int J Mol Sci 2023; 24:ijms24076355. [PMID: 37047325 PMCID: PMC10093982 DOI: 10.3390/ijms24076355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.
Collapse
Affiliation(s)
- Aya K. Cloyd
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Paulette Spencer
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
2
|
Lallemang M, Yu L, Cai W, Rischka K, Hartwig A, Haag R, Hugel T, Balzer BN. Multivalent non-covalent interactions lead to strongest polymer adhesion. NANOSCALE 2022; 14:3768-3776. [PMID: 35171194 DOI: 10.1039/d1nr08338d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multivalent interactions play a leading role in biological processes such as the inhibition of inflammation or virus internalization. The multivalent interactions show enhanced strength and better selectivity compared to monovalent interactions, but they are much less understood due to their complexity. Here, we detect molecular interactions in the range of a few piconewtons to several nanonewtons and correlate them with the formation and subsequent breaking of one or several bonds and assign these bonds. This becomes possible by performing atomic force microcopy (AFM)-based single molecule force spectroscopy of a multifunctional polymer covalently attached to an AFM cantilever tip on a substrate bound polymer layer of the multifunctional polymer. Varying the pH value and the crosslinking state of the polymer layer, we find that bonds of intermediate strength (non-covalent), like coordination bonds, give the highest multivalent bond strength, even outperforming strong (covalent) bonds. At the same time, covalent bonds enhance the polymer layer density, increasing in particular the number of non-covalent bonds. In summary, we can show that the key for the design of stable and durable polymer coatings is to provide a variety of multivalent interactions and to keep the number of non-covalent interactions at a high level.
Collapse
Affiliation(s)
- Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takusstraße 3, 14195 Berlin, Germany
| | - Wanhao Cai
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
| | - Andreas Hartwig
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
- University of Bremen, Department 2 Biology/Chemistry, Leobener Straße 3, 28359 Bremen, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takusstraße 3, 14195 Berlin, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Affiliation(s)
- Guido Raos
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Via P. Bucci, 33/C, 87036 Rende (CS), Italy
| |
Collapse
|