1
|
Zheng J, Zhang W, Gong Y, Liang W, Leng Y. A novel near-infrared polymethine dye biosensor for rapid and selective detection of lithocholic acid. Biosens Bioelectron 2024; 259:116383. [PMID: 38749286 DOI: 10.1016/j.bios.2024.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Lithocholic acid (LCA), a secondary bile acid, has emerged as a potential early diagnostic biomarker for various liver diseases. In this study, we introduce a novel near-infrared (NIR) polymethine dye-based biosensor, capable of sensitive and selective detection of LCA in phosphate buffer and artificial urine (AU) solutions. The detection mechanism relies on the formation of J-aggregates resulting from the interplay of 3,3-Diethylthiatricarbocyanine iodide (DiSC2(7)) dye molecules and LCA, which induces a distinctive red shift in both absorption and fluorescence spectra. The biosensor demonstrates a detection limit for LCA of 70 μM in PBS solution (pH 7.4), while in AU solution, it responds to an LCA concentration as low as ∼60 μM. Notably, the proposed biosensor exhibits outstanding selectivity for LCA, effectively distinguishing it from common interferents such as uric acid, ascorbic acid, and glucose. This rapid, straightforward, and cost-effective spectrometer-based method underscores its potential for early diagnosis of liver diseases by monitoring LCA concentrations.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo, 153-8505, Japan
| | - Wencui Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232), Sorbonne Université, 75252, Paris, France
| | - Yanli Gong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenlang Liang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yongxiang Leng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
2
|
Turn-on Fluorescence of Davydov-Split Aggregate Particles for Protein Detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Ma Y, Dicce A, Reddy NR, Fang J. Liquid-crystalline ordering of davydov-split aggregates of cyanine dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Reddy N, Dicce A, ma Y, Chen L, Chai K, Fang J. Crystalline H-Aggregate Nanoparticles for Detecting Dopamine Release from M17 Human Neuroblastoma Cells. J Mater Chem B 2022; 10:8024-8032. [DOI: 10.1039/d2tb01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is essential for transmitting signals in neuronal communications. The deficiency of DA release from neurons is implicated in neurological disorders. Therefore, there has...
Collapse
|
5
|
Reddy NR, Aubin M, Kushima A, Fang J. Fluorescent H-Aggregate Vesicles and Tubes of a Cyanine Dye and Their Potential as Light-Harvesting Antennae. J Phys Chem B 2021; 125:7911-7918. [PMID: 34232656 DOI: 10.1021/acs.jpcb.1c04262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
H-aggregates of π-conjugated dyes are an ordered supramolecular structure. However, the non-fluorescence behavior of H-aggregates greatly limits their potential applications. In this paper, we report the formation of fluorescent H-aggregates with vesicular and tubular morphologies by the self-assembly of 3,3'-diethylthiacarbocyanine iodide (DiSC2(3)) in ammonia/methanol mixtures. The transition from H-aggregate vesicles to H-aggregate tubes can be achieved by increasing the volume fraction of methanol in the mixtures. H-aggregate vesicles and tubes show two blue-shifted absorption bands and strong fluorescence, which result from the inclined arrangement of DiSC2(3) molecules. Furthermore, light-harvesting complexes are formed by adding dopamine (DA)-quinone (acceptor) in synthetic urine with H-aggregate vesicles or tubes. Our results show that H-aggregate tubes are more efficient than H-aggregate vesicles in transferring excited electrons to DA-quinone acceptors.
Collapse
Affiliation(s)
- Nitin Ramesh Reddy
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Megan Aubin
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Akihiro Kushima
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Jiyu Fang
- Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
6
|
Kamalakshan A, Ansilda R, Mandal S. Nanotube Template-Directed Formation of Strongly Coupled Dye Aggregates with Tunable Exciton Fluorescence Controlled by Switching between J- and H-Type Electronic Coupling. J Phys Chem B 2021; 125:7447-7455. [PMID: 34196554 DOI: 10.1021/acs.jpcb.1c02750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strongly coupled dye aggregates with tailored exciton properties may find their use in developing artificial light-harvesting and optoelectronic devices. Here, we report the control of tubular pseudoisocyanine (PIC) dye J- and H-aggregate formation with tunable exciton fluorescence using lithocholic acid (LCA) as a template. The LCA-templated PIC J-aggregate nanotubes formed at a higher LCA/PIC molar ratio (≥5:1) exhibit a sharp, red-shifted absorption band (at 555 nm), intense fluorescence (at 565 nm), and shorter lifetime (200 ps), all indicating their strong superradiance properties. In contrast, the H-aggregate nanotubes formed at a lower LCA/PIC molar ratio (2:1) exhibit a significantly blue-shifted absorption band (at 420 nm) and highly red-shifted fluorescence emission (at 600 nm) with enhanced lifetime (4.40 ns). The controlled switching of the optical properties of the PIC dye aggregates achieved by controlling the LCA/PIC molar ratio could serve as an important guideline for the design of organic photo-functional materials.
Collapse
Affiliation(s)
- Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Roselin Ansilda
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|