1
|
Liu C, Han Y, Wang Z, Zhang L, Yang W. Preparation of (3-Aminopropyl)triethoxysilane-Modified Silica Particles with Tunable Isoelectric Point. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12565-12572. [PMID: 38836786 DOI: 10.1021/acs.langmuir.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Silica particles modified with amino groups hold immense potential across diverse fields, owing to their distinctive properties. The widely adopted method of surface modification, utilizing (3-aminopropyl)triethoxysilane (APTES), facilitates the incorporation of amino-functional groups onto the silica surface, thereby creating sites for subsequent functionalization with other molecules. In this context, the ability to precisely tailor the surface properties of amino-functionalized silica particles is crucial for optimizing their performance in various applications. In this work, we systematically investigated the influence of the APTES concentration and water content on the density of amino groups grafted on the silica surface within an ethanol-water mixture. The rational control of hydrolysis and condensation of APTES enabled the precise regulation of the amino density on the silica surface, resulting in a notable shift in the isoelectric point from 2.9 to 9.2. Subsequently, we assembled amino-functionalized silica with different isoelectric points with gold nanoparticles to demonstrate their tunable ability as surface-enhanced Raman scattering (SERS) substrates. This controlled and tailored amino-functionalization process opens up new routes for fine-tuning the properties of silica particles, thereby expanding their utility across various applications in materials science, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Zhongshun Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| |
Collapse
|
2
|
Magee E, Tang F, Walker M, Zak A, Tenne R, McNally T. Silane functionalization of WS 2 nanotubes for interaction with poly(lactic acid). NANOSCALE 2023; 15:7577-7590. [PMID: 37039126 DOI: 10.1039/d3nr00583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functionalisation of nanofillers is required for the promotion of strong interfacial interactions with polymers and is essential as a route for the preparation of (nano)composites with superior mechanical properties. Tungsten disulphide nanotubes (WS2 NTs) were functionalized using (3-aminopropyl) triethoxysilane (APTES) for preparation of composites with poly(lactic acid) (PLA). The WS2 NTs : APTES ratios used were 1 : 1, 1 : 2 and 1 : 4 WS2 NTs : APTES. The APTES formed siloxane networks bound to the NTs via surface oxygen and carbon moieties adsorbed on the WS2 NTs surface, detected by X-ray photoelectron spectroscopy (XPS) studies and chemical mapping using energy dispersive X-ray spectroscopy in the scanning transmission electron microscope (STEM-EDS). The successful silane modification of the WS2 NTs was clearly evident with both significant peak shifting by as much as 60 cm-1 for Si-O-Si vibrations (FTIR) and peak broadening of the A1g band in the Raman spectra of the WS2 NTs. The evolution of new bands was also observed and are associated with Si-CH2-CH2 and, symmetric and assymetric -NH3+ deformation modes (FTIR). Further evidence for functionalization was obtained from zeta potential measurements as there was a change in surface charge from negative for pure WS2 NTs to positive for APTES modified WS2 NTs. Additionally, the thermal stability of APTES was shifted to much higher temperatures as it was bound to the WS2 NTs. The APTES modified WS2 NTs were organophilic and readily dispersed in PLA, while presence of the pendant amine and hydroxyl groups resulted in strong interfacial interactions with the polymer matrix. The inclusion of as little as 0.5 wt% WS2 NTs modified with 2.0 wt% APTES resulted in an increase of 600% in both the elongation at break (a measure of ductility) and the tensile toughness relative to neat PLA, without impacting the stiffness or strength of the polymer.
Collapse
Affiliation(s)
- Eimear Magee
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, CV4 7AL, UK.
| | | | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Alla Zak
- Physics Department, Faculty of Sciences, Holon Institute of Technology - HIT, Holon 5810201, Israel
| | - Reshef Tenne
- Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tony McNally
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, CV4 7AL, UK.
| |
Collapse
|
3
|
Zhu B, Jia E, Zhang Q, Zhang Y, Zhou H, Tan Y, Deng Z. Titanium Surface-Grafted Zwitterionic Polymers with an Anti-Polyelectrolyte Effect Enhances Osteogenesis. Colloids Surf B Biointerfaces 2023; 226:113293. [PMID: 37028232 DOI: 10.1016/j.colsurfb.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Zwitterionic polymers have attracted considerable attention because of their anti-adsorption and unique anti-polyelectrolyte effects and was widely used in surface modification. In this study, zwitterionic copolymers (poly (sulfobetaine methacrylate-co-butyl acrylate) (pSB) coating on the surface of a hydroxylated titanium sheet using surface-initiated atom transfer radical polymerization (SI-ATRP) was successfully constructed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Water contact angle (WCA) analysis proved the successful preparation of the coating. The swelling effect caused by the anti-polyelectrolyte effect was reflected in the simulation experiment in vitro, and this coating can promote the proliferation and osteogenesis of MC3T3-E1. Therefore, this study provides a new strategy for designing multifunctional biomaterials for implant surface modifications.
Collapse
Affiliation(s)
- Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Erna Jia
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China.
| | - Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yanyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
4
|
Heyn TR, Schrader M, Kampen I, Kwade A, Schwarz K, Keppler JK. Glass beads increase the formation kinetics of beta-lactoglobulin amyloid fibrils. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Zarinwall A, Maurer V, Pierick J, Oldhues VM, Porsiel JC, Finke JH, Garnweitner G. Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels. Drug Deliv 2022; 29:2086-2099. [PMID: 35838584 PMCID: PMC9291651 DOI: 10.1080/10717544.2022.2092237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.
Collapse
Affiliation(s)
- Ajmal Zarinwall
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jennifer Pierick
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Victor Marcus Oldhues
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Takahashi K, Nakagawa Y, Sato Y, Wakita R, Shigeru M, Ikoma T. pH-responsive release of anesthetic lidocaine derivative QX-OH from mesoporous silica nanoparticles mediated by ester bonds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Li Y, Zhou Y, Wang R, Chen Z, Luo X, Wang L, Zhao X, Zhang C, Yu P. Removal of aflatoxin B 1 from aqueous solution using amino-grafted magnetic mesoporous silica prepared from rice husk. Food Chem 2022; 389:132987. [PMID: 35489257 DOI: 10.1016/j.foodchem.2022.132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
It is urgent to solve the contamination of aflatoxin B1 (AFB1) in food and water. In this study, the mesoporous silica was prepared from rice husk, which was then magnetized using the precipitation technique, followed by amino-modification with 3-aminopropyltriethoxysilane, forming amino-grafted magnetic mesoporous silica (NMMS). X-ray diffraction, Fourier transformed infrared spectra, and thermogravimetric analysis showed the successful grafting of amino groups on NMMS with a percentage of grafting up to 13.33%. The NMMS had an adsorption capacity of 169.88 μg/g and a removal rate of 93.43% for AFB1 in aqueous solutions at 20 °C, pH 7.0 for 2.0 h. The adsorption of AFB1 by NMMS followed a quasi-second-order kinetics and fitted well with the Langmuir model. Furthermore, the removal rate of AFB1 by NMMS remained 72.43% after repeating the adsorption-desorption process for five times. This study provided a facile approach to prepare NMMS for effective removal of AFB1.
Collapse
Affiliation(s)
- Ya'nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Yunyu Zhou
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Wuxi Zodolabs Biotech Co., Ltd, Yanxin Road 311, Wuxi 214174, China
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiaohu Luo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiuping Zhao
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Chen Zhang
- Wuxi Xinwu Environmental Protection Technology Co., Ltd, Tianshan Road 8-2116, Wuxi 214028, China
| | - Peibin Yu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
8
|
Heo JW, An L, Chen J, Bae JH, Kim YS. Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. CHEMOSPHERE 2022; 295:133815. [PMID: 35104546 DOI: 10.1016/j.chemosphere.2022.133815] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Research on low-cost bio-adsorbents for the removal of harmful substances from effluents has recently attracted significant attention. In this study, three types of amino-silane-modified lignins (ASLs) with primary, secondary, and tertiary amine groups were prepared, and their adsorption behavior toward cationic and anionic dyes was investigated. Chemical structural analyses indicated that the three amino-silane reagents resulted in different molecular self-assembly structures on the lignin surface. The ASLs exhibited enhanced thermal stabilities and increased surface areas with different surface charges in different pH ranges. Owing to the high density of primary, secondary, and tertiary amine groups, the ASLs exhibited excellent adsorption capacities for cationic and anionic dyes. Additionally, they selectively adsorb anionic and cationic dyes according to the pH conditions. The ASL with primary amine had the highest adsorption capacity for Methylene blue and Congo red, reaching 187.27 and 293.26 mg·g-1, respectively, followed by ASLs with the secondary amine and tertiary amine. All adsorption processes followed the Langmuir and Temkin isotherms and had pseudo-second-order kinetics. The hypothesized adsorption mechanism mainly involves electrostatic interaction, NH-π interaction, hydrogen bonding interaction and π-π interaction.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Liangliang An
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jiansong Chen
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Ho Bae
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
9
|
Lin CX, Tang WR, Tseng LT, Valinton JAA, Tsai CH, Kurniawan A, Chiou K, Chen CH. Enhanced Thermal Conducting Behavior of Pressurized Graphene-Silver Flake Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:727-734. [PMID: 34979082 DOI: 10.1021/acs.langmuir.1c02631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern electronics continue to shrink down the sizes while becoming more and more powerful. To improve heat dissipation of electronics, fillers used in the semiconductor packaging process need to possess both high electrical and thermal conductivity. Graphene is known to improve thermal conductivity but suffers from van der Waals interactions and thus poor processibility. In this study, we wrapped silver microflakes with graphene sheets, which can enable intercoupling of phonon- and electron-based thermal transport, to improve the thermal conductivity. Using just 1.55 wt % graphene for wrapping can achieve a 2.64-times greater thermal diffusivity (equivalent to 254.196 ± 10.123 W/m·K) over pristine silver flakes. Graphene-wrapped silver flakes minimize the increase of electrical resistivity, which is one-order higher (1.4 × 10-3 Ω·cm) than the pristine flakes (5.7 × 10-4 Ω·cm). Trace contents of wrapped graphene (<1.55 wt %) were found to be enough to bridge the void between Ag flakes, and this enhances the thermal conductivity. Graphene loading at 3.76 wt % (beyond the threshold of 1.55 wt %) results in the significant graphene aggregation that decreases thermal diffusivity to as low as 16% of the pristine Ag filler. This work recognizes that suitable amounts of graphene wrapping can enhance heat dissipation, but too much graphene results in unwanted aggregation that hinders thermal conducting performance.
Collapse
Affiliation(s)
- Chiao-Xian Lin
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Wei-Renn Tang
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Li-Ting Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
- Ample Electronic Co. No. 32, Dayou 3rd St., Daliao Dist., Kaohsiung City 831, Taiwan
| | - Joey Andrew A Valinton
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Cheng-Han Tsai
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Alfin Kurniawan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Kevin Chiou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| |
Collapse
|
10
|
Waniek T, Braun U, Silbernagl D, Sturm H. The impact of water released from boehmite nanoparticles during curing in epoxy‐based nanocomposites. J Appl Polym Sci 2021. [DOI: 10.1002/app.51006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tassilo Waniek
- Department 6 Materials Chemistry, Division 6.6 Physical and Chemical Analysis of Polymers Bundesanstalt für Materialforschung und ‐prüfung (BAM) Berlin Germany
- Faculty V of Mechanical Engineering and Transport Systems, Institute of Machine Tools and Factory Management (IWF), Tribology Technical University of Berlin Berlin Germany
| | - Ulrike Braun
- Department 6 Materials Chemistry, Division 6.6 Physical and Chemical Analysis of Polymers Bundesanstalt für Materialforschung und ‐prüfung (BAM) Berlin Germany
| | - Dorothee Silbernagl
- Department 6 Materials Chemistry, Division 6.6 Physical and Chemical Analysis of Polymers Bundesanstalt für Materialforschung und ‐prüfung (BAM) Berlin Germany
| | - Heinz Sturm
- Department 6 Materials Chemistry, Division 6.6 Physical and Chemical Analysis of Polymers Bundesanstalt für Materialforschung und ‐prüfung (BAM) Berlin Germany
- Faculty V of Mechanical Engineering and Transport Systems, Institute of Machine Tools and Factory Management (IWF), Tribology Technical University of Berlin Berlin Germany
| |
Collapse
|
11
|
Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861. NANOMATERIALS 2021; 11:nano11041057. [PMID: 33924180 PMCID: PMC8074366 DOI: 10.3390/nano11041057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023]
Abstract
Targeted tumor therapy can provide the basis for the inhibition of tumor growth. However, a number of toxin-based therapeutics lack efficacy because of insufficient endosomal escape after being internalized by endocytosis. To address this problem, the potential of glycosylated triterpenoids, such as SO1861, as endosomal escape enhancers (EEE) for superparamagnetic iron oxide nanoparticle (SPION)-based toxin therapy was investigated. Herein, two different SPION-based particle systems were synthesized, each selectively functionalized with either the targeted toxin, dianthin-epidermal growth factor (DiaEGF), or the EEE, SO1861. After applying both particle systems in vitro, an almost 2000-fold enhancement in tumor cell cytotoxicity compared to the monotherapy with SPION-DiaEGF and a 6.7-fold gain in specificity was observed. Thus, the required dose of the formulation was appreciably reduced, and the therapeutic window widened.
Collapse
|