1
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
2
|
Investigation of the ionic conditions in SiRNA-mediated delivery through its carriers in the cell membrane: a molecular dynamic simulation. Sci Rep 2022; 12:17520. [PMID: 36266467 PMCID: PMC9582388 DOI: 10.1038/s41598-022-22509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023] Open
Abstract
SiRNA is a new generation of drug molecules and a new approach for treating a variety of diseases such as cancer and viral infections. SiRNA delivery to cells and translocation into cytoplasm are the main challenges in the clinical application of siRNA. Lipid carriers are one of the most successful carriers for siRNA delivery. In this study, we investigated the interaction of siRNA with a zwitterionic bilayer and how ion concentration and lipid conjugation can affect it. The divalent cation such as Mg2+ ions could promote the siRNA adsorption on the bilayer surface. The cation ions can bind to the head groups of lipids and the grooves of siRNA molecules and form bridges between the siRNA and bilayer surface. Our findings demonstrated the bridges formed by divalent ions could facilitate the attachment of siRNA to the membrane surface. We showed that the divalent cations can regulate the bridging-driven membrane attachment and it seems the result of this modulation can be used for designing biomimetic devices. In the following, we examined the effect of cations on the interaction between siRNA modified by cholesterol and the membrane surface. Our MD simulations showed that in the presence of Mg2+, the electrostatic and vdW energy between the membrane and siRNA were higher compared to those in the presence of NA+. We showed that the electrostatic interaction between membrane and siRNA cannot be facilitated only by cholesterol conjugated. Indeed, cations are essential to create coulomb repulsion and enable membrane attachment. This study provides important insight into liposome carriers for siRNA delivery and could help us in the development of siRNA-based therapeutics. Due to the coronavirus pandemic outbreak, these results may shed light on the new approach for treating these diseases and their molecular details.
Collapse
|