1
|
Blahnik J, Schuster J, Müller R, Müller E, Kunz W. Surfactant-free microemulsions (SFMEs) as a template for porous polymer synthesis. J Colloid Interface Sci 2024; 655:371-382. [PMID: 37948811 DOI: 10.1016/j.jcis.2023.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS Surfactant-free microemulsions (SFMEs) were recently reported to be an interesting medium for free-radical polymerizations. The aim of this study is to investigate the link between the morphology of PMMA monopolymers as well as PMMA-PHEMA-copolymers with the expected nature of the SFME before polymerization. A surfactant-based microemulsion with nonionic surfactants was investigated as a reference system. It is expected that the kind of mesostructuring of the SFME (oil-in-water-like, bicontinuous, inverse) corresponds with the latter polymer morphology, just like it is the case in surfactant-based systems. EXPERIMENTS Simple SFME systems composed of water, a hydrotrope (isopropanol or tert-butyl alcohol), and methyl methacrylate (MMA) as polymerizable oil as well as the more complex system comprising 2-hydroxyethyl methacrylate (HEMA) as an additional amphiphilic co-monomer, were investigated. A surfactant-based system using a mixture of Tergitol 15-S-12 and Synperonic A11-LQ-(TH) as surfactants, water, and MMA in the presence and absence of HEMA as polymerizable co-surfactant was investigated as a reference system. Structural analysis was done by recording (pseudo-)ternary phase diagrams, dynamic light scattering (DLS), and conductivity measurements. Polymerizations were performed using the oil-soluble initiator PEROXAN BCC at 318 K for 24 h with adjacent lyophilization. The morphology of dried polymers was determined by light microscopy, scanning electron microscopy, and BET adsorption isotherms. FINDINGS Porous polymers of different morphologies (from coagulations of droplet-like aggregates to sponge-like ones) in the size range of 200 nm up to some µm can be derived from previously mesostructured, surfactant-free mixtures. Previously unstructured, oil-rich regions lead to solid, transparent polymers without nanostructured morphologies. The surfactant-based reference system comprises remarkably similar phase behavior before polymerizations and similar polymer morphologies as the comparable surfactant-free system. This leads to the assumption that the hydrotropic behavior of HEMA and its interplay with MMA and water is the structure-giving factor in this system.
Collapse
Affiliation(s)
- Jonas Blahnik
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Jennifer Schuster
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer Müller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Eva Müller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
2
|
Anjali, Pandey S. Formation of Ethanolamine-Mediated Surfactant-Free Microemulsions Using Hydrophobic Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2254-2267. [PMID: 38232323 DOI: 10.1021/acs.langmuir.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrophobic deep eutectic solvents (HDESs) are emerging as versatile, relatively benign, and inexpensive alternatives to conventional organic solvents in a diverse set of applications. In this context, the formation of microemulsions with HDES replacing the oil phase has become an area of active exploration. Because of recent reports on the undesirable toxicity of many common surfactants, efforts are under way to investigate the formation of surfactant-free microemulsions (SFMEs) using HDES as an oil phase. We present SFME formation using HDESs constituted of n-decanoic acid and five (5) structurally different terpenoids [thymol, l(-)-menthol, linalool, β-citronellol, and geraniol] at a 1:1 molar ratio as the oil phase and water as the hydrophilic phase. Ethanolamine (ETA) exhibited the best potential as a hydrotrope among several other similar small molecules. Results showed a drastic increase in water solubility within the HDESs in the presence of ETA. ETA exerted its hydrotropic action at different extent for each DES system via chemical interaction with the H-bond donor (HBD) constituent of the HDES. The optimum hydrotropic concentration (minimum hydrotrope and maximum water retention, XETAOPT) assigned for each DES/ETA/water system and water loading are reported, and the trends are discussed in detail. Ternary phase diagrams are constructed using visual observation and the dye staining method. The area under the single- and multiple-phase regions (assigned in ternary phase diagrams) was estimated. "Pre-Ouzo" enforced by ETA was investigated using dynamic light scattering (DLS) of the DES/ETA/water systems at XETAOPT. A systematic growth in nanoaggregates was observed with the subsequent addition of water in DES/ETA systems while continuously changing the existing microstructure. The presence of a core (oil)-shell (water)-like structure as indicated by the fluorescence response of Nile red in the "pre-Ouzo" region is speculated. We were able to prepare a homogeneous solution of [K3Fe(CN)6] salt in "pre-Ouzo" mixtures with no apparent deviation in the Beer-Lambert law.
Collapse
Affiliation(s)
- Anjali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
3
|
Li M, Wakata Y, Zeng H, Sun C. On the thermal response of multiscale nanodomains formed in trans-anethol/ethanol/water surfactant-free microemulsion. J Colloid Interface Sci 2023; 652:1944-1953. [PMID: 37690302 DOI: 10.1016/j.jcis.2023.08.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
HYPOTHESIS Surfactant-free microemulsion (SFME), an emerging phenomenology that occurs in the monophasic zone of a broad category of ternary mixtures 'hydrophobe/hydrotrope/water', has attracted extensive interests due to their unique physicochemical properties. The potential of this kind of ternary fluid for solubilization and drug delivery make them promising candidates in many industrial scenarios. EXPERIMENTS Here the thermodynamic behavior of these multiscale nanodomains formed in the ternary trans-anethol/ethanol/water system over a wide range of temperatures is explored. The macroscopic physical properties of the ternary solutions are characterized, with revealing the temperature dependence of refractive index and dynamic viscosity. FINDINGS With increasing temperature, the ternary system shows extended areas in the monophasic zone. We demonstrate that the phase behavior and the multiscale nanodomains formed in the monophasic zone can be precisely and reversibly tuned by altering the temperature. Increasing temperature can destroy the stability of the multiscale nanodomains in equilibrium, with an exponential decay in the scattering light intensity. Nevertheless, molecular-scale aggregates and mesoscopic droplets exhibit significantly different response behaviors to temperature stimuli. The temperature-sensitive nature of the ternary SFME system provides a crucial step forward exploring and industrializing its stability.
Collapse
Affiliation(s)
- Mingbo Li
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuki Wakata
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Zeng
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Chao Sun
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Zeng H, Wakata Y, Chao X, Li M, Sun C. On evaporation dynamics of an acoustically levitated multicomponent droplet: Evaporation-triggered phase transition and freezing. J Colloid Interface Sci 2023; 648:736-744. [PMID: 37321093 DOI: 10.1016/j.jcis.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
HYPOTHESIS Multi-component droplet evaporation has received significant attention in recent years due to the broad range of applications such as material science, environmental monitoring, and pharmaceuticals. The selective evaporation induced by the different physicochemical properties of components is expected to influence the concentration distributions and the separation of mixtures, thereby leading to rich interfacial phenomena and phase interactions. EXPERIMENTS A ternary mixture system containing hexadecane, ethanol, and diethyl ether is investigated in this study. The diethyl ether exhibits both surfactant-like and co-solvent properties. Systematic experiments were performed using acoustic levitation technique to achieve a contact-less evaporation condition. The evaporation dynamics and temperature information are acquired in the experiments, using high-speed photography and infrared thermography technologies. FINDINGS Three distinct stages, namely, 'Ouzo state', 'Janus state', and 'Encapsulating state', are identified for the evaporating ternary droplet in acoustic levitation. A self-sustaining periodic freezing & melting evaporation mode is reported. A theoretical model is developed to characterize the multi-stage evaporating behaviors. We demonstrate the capability to tune the evaporating behaviors by varying the initial droplet composition. This work provides a deeper understanding of the interfacial dynamics and phase transitions involved in multi-component droplets and proposes novel strategies for the design and control of droplet-based systems.
Collapse
Affiliation(s)
- Hao Zeng
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Yuki Wakata
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xing Chao
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Mingbo Li
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Chao Sun
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Blahnik J, Krickl S, Schmid K, Müller E, Lupton J, Kunz W. Microemulsion and microsuspension polymerization of methyl methacrylate in surfactant-free microemulsions (SFME). J Colloid Interface Sci 2023; 648:755-767. [PMID: 37321095 DOI: 10.1016/j.jcis.2023.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
HYPOTHESIS This article presents a free-radical polymerization method in a mesostructured system - free of any surfactants, protective colloids, or other auxiliary agents. It is applicable for a large variety of industrially relevant vinylic monomers. The aim of this work is to study the impact of surfactant-free mesostructuring on the polymerization kinetics and the polymer derived. EXPERIMENTS So-called surfactant-free microemulsions (SFME) were investigated as reaction media with a simple composition comprising water, a hydrotrope (ethanol, n-propanol, isopropanol, tert-butyl alcohol), and the monomer as the reactive oil phase (methyl methacrylate). Polymerization reactions were performed using oil-soluble, thermal- and UV-active initiators (surfactant-free microsuspension polymerization) and water-soluble, redox-active initiators (surfactant-free microemulsion polymerization). Structural analysis of the SFMEs used and the polymerization kinetics were followed by dynamic light scattering (DLS). Dried polymers were analyzed with regard to their conversion yield by mass balance, the corresponding molar masses were determined using gel permeation chromatography (GPC), and the morphology was investigated by light microscopy. FINDINGS All alcohols are suitable hydrotropes to form SFMEs, except for ethanol, which forms a molecularly disperse system. We observe significant differences in the polymerization kinetics and the molar masses of the polymers obtained. Ethanol leads to significantly higher molar masses. Within a system, higher concentrations of the other alcohols investigated give rise to less pronounced mesostructuring, lower conversions, and lower average molar masses. It could be demonstrated that the effective concentration of alcohol in the oil-rich pseudophases as well as the repulsive effect of the surfactant-free, alcohol-rich interphases constitute the relevant factors influencing polymerization. Concerning the morphology, the polymers derived range from powder-like polymers in the so-called "pre-Ouzo region" over porous-solid polymers in the bicontinuous region to dense, almost compacted, transparent polymers in unstructured regions, comparable to the findings for surfactant-based systems reported in the literature. Polymerizations in SFME comprise a new intermediate between well-known solution (i.e., molecularly dispersed) and microemulsion respectively microsuspension polymerization processes.
Collapse
Affiliation(s)
- Jonas Blahnik
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Sebastian Krickl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Klaus Schmid
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Eva Müller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - John Lupton
- Institute of Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
6
|
Vratsanos M, Xue W, Rosenmann ND, Zarzar LD, Gianneschi NC. Ouzo Effect Examined at the Nanoscale via Direct Observation of Droplet Nucleation and Morphology. ACS CENTRAL SCIENCE 2023; 9:457-465. [PMID: 36968532 PMCID: PMC10037490 DOI: 10.1021/acscentsci.2c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Herein, we present the direct observation via liquid-phase transmission electron microscopy (LPTEM) of the nucleation and growth pathways of structures formed by the so-called "ouzo effect", which is a classic example of surfactant-free, spontaneous emulsification. Such liquid-liquid phase separation occurs in ternary systems with an appropriate cosolvent such that the addition of the third component extracts the cosolvent and makes the other component insoluble. Such droplets are homogeneously sized, stable, and require minimal energy to disperse compared to conventional emulsification methods. Thus, ouzo precipitation processes are an attractive, straightforward, and energy-efficient technique for preparing dispersions, especially those made on an industrial scale. While this process and the resulting emulsions have been studied by numerous indirect techniques (e.g., X-ray and light scattering), direct observation of such structures and their formation at the nanoscale has remained elusive. Here, we employed the nascent technique of LPTEM to simultaneously evaluate droplet growth and nanostructure. Observation of such emulsification and its rate dependence is a promising indication that similar LPTEM methodologies may be used to investigate emulsion formation and kinetics.
Collapse
Affiliation(s)
- Maria
A. Vratsanos
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wangyang Xue
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nathan D. Rosenmann
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lauren D. Zarzar
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Nathan C. Gianneschi
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Simpson Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Department of Biomedical Engineering, Department of
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Iglicki D, Goubault C, Nour Mahamoud M, Chevance S, Gauffre F. Shedding light on the formation and stability of mesostructures in ternary "Ouzo" mixtures. J Colloid Interface Sci 2023; 633:72-81. [PMID: 36436349 DOI: 10.1016/j.jcis.2022.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS Ternary systems made of water, a water-miscible solvent, and hydrophobic solutes spontaneously produce metastable particles by the "Ouzo effect" and thermodynamically stable "Surfactant-Free Micro Emulsions" (SFME). However, the use of different analyses has led to a variability in the criteria to determine the boundaries of the Ouzo domain. We hypothesized that this could be clarified by investigating the stability and the physical state of the particles. EXPERIMENTS We investigate four systems using both solid and liquid solutes and two different solvents, and achieved a careful investigation of their phase diagrams, using DLS, Nanoparticle Tracking Analysis, NMR, Multiple Light Scattering, electrophoretic mobility, and fluorescence analysis. FINDINGS Our results evidence that the transition from the monophasic to the Ouzo domains does not coincide with the cloudiness curve, and that compositions in the Ouzo domain can look fully transparent, in contrast to what is often considered. This transition is best determined by stability analysis. The cloudiness curve corresponds to the formation of particles with a large size dispersity. In the Ouzo domain, we observed an exchange of solute between the continuous phase and solute particles swollen with solvent. In addition, the particles are stabilized against coalescence by their high negative charge.
Collapse
Affiliation(s)
- Déborah Iglicki
- Univ Rennes, CNRS, ISCR - UMR 6226, ScanMat - UAR 2025, F-35000 Rennes, France.
| | - Clément Goubault
- Univ Rennes, CNRS, ISCR - UMR 6226, ScanMat - UAR 2025, F-35000 Rennes, France.
| | | | - Soizic Chevance
- Univ Rennes, CNRS, ISCR - UMR 6226, ScanMat - UAR 2025, F-35000 Rennes, France.
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR - UMR 6226, ScanMat - UAR 2025, F-35000 Rennes, France.
| |
Collapse
|
8
|
Gazil O, Virgilio N, Gauffre F. Synthesis of ultrasmall metal nanoparticles and continuous shells at the liquid/liquid interface in Ouzo emulsions. NANOSCALE 2022; 14:13514-13519. [PMID: 36106947 DOI: 10.1039/d2nr04019k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel method to synthesize metal nanoparticle-shells (NP-shells) and continuous shells at the liquid/liquid interface, via an interfacial reaction in an Ouzo emulsion. Ouzo emulsions spontaneously form submicronic droplets with a narrow size distribution, without any energy-intensive process. The Ouzo system in this work comprises water, tetrahydrofuran (THF) and butylated hydroxytoluene (BHT), and forms BHT-rich droplets (∼100 nm). The addition of a reducing agent (NaBH4) in the aqueous phase, and of a metal precursor (AuPPh3Cl and/or Pd(PPh3)2Cl2) in the BHT-rich droplets, results in the formation of Au nanoparticles (AuNPs), continuous Pd shells, or bimetallic shells, at the interface of the droplets. Control over the NP-shell size was achieved by the addition of a water-soluble polymer during the synthesis, which in turn leads to smaller NP-shells.
Collapse
Affiliation(s)
- Olivier Gazil
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | | |
Collapse
|
9
|
Hardiagon A, Baaden M, Sterpone F. Artificial Water Channels Form Precursors to Sponge-Like Aggregates in Water–Ethanol Mixtures. J Phys Chem A 2022; 126:6628-6636. [DOI: 10.1021/acs.jpca.2c04545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arthur Hardiagon
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, 13 rue Pierre et Marie Curie, Paris F-75005, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, 13 rue Pierre et Marie Curie, Paris F-75005, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, 13 rue Pierre et Marie Curie, Paris F-75005, France
| |
Collapse
|
10
|
Wu H, Kanike C, Atta A, Zhang X. Nanoextraction based on surface nanodroplets for chemical preconcentration and determination. BIOMICROFLUIDICS 2022; 16:051502. [PMID: 36330200 PMCID: PMC9625837 DOI: 10.1063/5.0121912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 05/04/2023]
Abstract
Liquid-liquid extraction based on surface nanodroplets, namely nanoextraction, can continuously extract and enrich target analytes from the flow of a sample solution. This sample preconcentration technique is easy to operate in a continuous flow system with a low consumption of organic solvent and a high enrichment factor. In this review, the evolution from single drop microextraction to advanced nanoextraction will be briefly introduced. Moreover, the formation principle and key features of surface nanodroplets will be summarized. Further, the major findings of nanoextraction combined with in-droplet chemistry toward sensitive and quantitative detection will be discussed. Finally, we will give our perspectives for the future trend of nanoextraction.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | | | - Arnab Atta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Xuehua Zhang
- Author to whom correspondence should be addressed:. URL:https://sites.google.com/view/soft-matter-interfaces/home
| |
Collapse
|
11
|
Li M, Yi L, Sun C. Spontaneously formed multiscale nano-domains in monophasic region of ternary solution. J Colloid Interface Sci 2022; 628:223-235. [DOI: 10.1016/j.jcis.2022.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
12
|
Patel AD, Desai MA. Progress in the field of hydrotropy: mechanism, applications and green concepts. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sustainability and greenness are the concepts of growing interest in the area of research as well as industries. One of the frequently encountered challenges faced in research and industrial fields is the solubility of the hydrophobic compound. Conventionally organic solvents are used in various applications; however, their contribution to environmental pollution, the huge energy requirement for separation and higher consumption lead to unsustainable practice. We require solvents that curtail the usage of hazardous material, increase the competency of mass and energy and embrace the concept of recyclability or renewability. Hydrotropy is one of the approaches for fulfilling these requirements. The phenomenon of solubilizing hydrophobic compound using hydrotrope is termed hydrotropy. Researchers of various fields are attracted to hydrotropy due to its unique physicochemical properties. In this review article, fundamentals about hydrotropes and various mechanisms involved in hydrotropy have been discussed. Hydrotropes are widely used in separation, heterogeneous chemical reactions, natural product extraction and pharmaceuticals. Applications of hydrotropes in these fields are discussed at length. We have examined the significant outcomes and correlated them with green engineering and green chemistry principles, which could give an overall picture of hydrotropy as a green and sustainable approach for the above applications.
Collapse
Affiliation(s)
- Akash D. Patel
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| | - Meghal A. Desai
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| |
Collapse
|
13
|
Blahnik J, Müller E, Braun L, Denk P, Kunz W. Nanoscopic microheterogeneities or pseudo-phase separations in non-conventional liquids. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Kuchierskaya AA, Semenov AP, Sayfutdinova AR, Kopitsyn DS, Vinokurov VA, Anisimov MA, Novikov AA. Interfacial tension and phase properties of water – Hydrotrope – Oil solutions: Water – 2-butoxyethanol – Toluene. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|