1
|
Ding H, Kollipara PS, Yao K, Chang Y, Dickinson DJ, Zheng Y. Multimodal Optothermal Manipulations along Various Surfaces. ACS NANO 2023; 17:9280-9289. [PMID: 37017427 PMCID: PMC10391738 DOI: 10.1021/acsnano.3c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optical tweezers have provided tremendous opportunities for fundamental studies and applications in the life sciences, chemistry, and physics by offering contact-free manipulation of small objects. However, it requires sophisticated real-time imaging and feedback systems for conventional optical tweezers to achieve controlled motion of micro/nanoparticles along textured surfaces, which are required for such applications as high-resolution near-field characterizations of cell membranes with nanoparticles as probes. In addition, most optical tweezers systems are limited to single manipulation modes, restricting their broader applications. Herein, we develop an optothermal platform that enables the multimodal manipulation of micro/nanoparticles along various surfaces. Specifically, we achieve the manipulation of micro/nanoparticles through the synergy between the optical and thermal forces, which arise due to the temperature gradient self-generated by the particles absorbing the light. With a simple control of the laser beam, we achieve five switchable working modes [i.e., tweezing, rotating, rolling (toward), rolling (away), and shooting] for the versatile manipulation of both synthesized particles and biological cells along various substrates. More interestingly, we realize the manipulation of micro/nanoparticles on rough surfaces of live worms and their embryos for localized control of biological functions. By enabling the three-dimensional control of micro/nano-objects along various surfaces, including topologically uneven biological tissues, our multimodal optothermal platform will become a powerful tool in life sciences, nanotechnology, and colloidal sciences.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yiran Chang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Kollipara PS, Chen Z, Zheng Y. Optical Manipulation Heats up: Present and Future of Optothermal Manipulation. ACS NANO 2023; 17:7051-7063. [PMID: 37022087 PMCID: PMC10197158 DOI: 10.1021/acsnano.3c00536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optothermal manipulation is a versatile technique that combines optical and thermal forces to control synthetic micro-/nanoparticles and biological entities. This emerging technique overcomes the limitations of traditional optical tweezers, including high laser power, photon and thermal damage to fragile objects, and the requirement of refractive-index contrast between target objects and the surrounding solvents. In this perspective, we discuss how the rich opto-thermo-fluidic multiphysics leads to a variety of working mechanisms and modes of optothermal manipulation in both liquid and solid media, underpinning a broad range of applications in biology, nanotechnology, and robotics. Moreover, we highlight current experimental and modeling challenges in the pursuit of optothermal manipulation and propose future directions and solutions to the challenges.
Collapse
Affiliation(s)
- Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Zhihan Chen
- Materials Science and Engineering program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science and Engineering program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects. Chem Commun (Camb) 2023; 59:2208-2221. [PMID: 36723196 PMCID: PMC10189788 DOI: 10.1039/d2cc06955e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Due to its contactless and fuel-free operation, optical rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. However, complex optics, extremely high operational power, and the applicability to limited objects restrict the broader use of optical rotation techniques. This Feature Article focuses on a rapidly emerging class of optical rotation techniques, termed optothermal rotation. Based on light-mediated thermal phenomena, optothermal rotation techniques overcome the bottlenecks of conventional optical rotation by enabling versatile rotary control of arbitrary objects with simpler optics using lower powers. We start with the fundamental thermal phenomena and concepts: thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, thermo-capillarity, and photophoresis. Then, we highlight various optothermal rotation techniques, categorizing them based on their rotation modes (i.e., in-plane and out-of-plane rotation) and the thermal phenomena involved. Next, we explore the potential applications of these optothermal manipulation techniques in areas such as single-cell mechanics, 3D bio-imaging, and micro/nanomotors. We conclude the Feature Article with our insights on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects in liquids. ARXIV 2023:arXiv:2301.04297v2. [PMID: 36713256 PMCID: PMC9882580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Controllable rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. Among different rotation techniques, optical rotation is particularly attractive due to its contactless and fuel-free operation. However, optical rotation precision is typically impaired by the intrinsic optical heating of the target objects. Optothermal rotation, which harnesses light-modulated thermal effects, features simpler optics, lower operational power, and higher applicability to various objects. In this Feature Article, we discuss the recent progress of optothermal rotation with a focus on work from our research group. We categorize the various rotation techniques based on distinct physical mechanisms, including thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, and thermo-capillarity. Benefiting from the different rotation modes (i.e., in-plane and out-of-plane rotation), diverse applications in single-cell mechanics, 3D bio-imaging, and micro/nanomotors are demonstrated. We conclude the article with our perspectives on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Ding H, Chen Z, Kollipara PS, Liu Y, Kim Y, Huang S, Zheng Y. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS NANO 2022; 16:10878-10889. [PMID: 35816157 PMCID: PMC9901196 DOI: 10.1021/acsnano.2c03111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Youngsun Kim
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhijie St., Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Kotsifaki DG, Nic Chormaic S. The role of temperature-induced effects generated by plasmonic nanostructures on particle delivery and manipulation: a review. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2199-2218. [PMID: 39678096 PMCID: PMC11636517 DOI: 10.1515/nanoph-2022-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2024]
Abstract
Plasmonic optical tweezers that stem from the need to trap and manipulate ever smaller particles using non-invasive optical forces, have made significant contributions to precise particle motion control at the nanoscale. In addition to the optical forces, other effects have been explored for particle manipulation. For instance, the plasmonic heat delivery mechanism generates micro- and nanoscale optothermal hydrodynamic effects, such as natural fluid convection, Marangoni fluid convection and thermophoretic effects that influence the motion of a wide range of particles from dielectric to biomolecules. In this review, a discussion of optothermal effects generated by heated plasmonic nanostructures is presented with a specific focus on applications to optical trapping and particle manipulation. It provides a discussion on the existing challenges of optothermal mechanisms generated by plasmonic optical tweezers and comments on their future opportunities in life sciences.
Collapse
Affiliation(s)
- Domna G. Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
- Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu, China
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| |
Collapse
|
7
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Chapman A, Bresme F. Polarisation of water under thermal fields: the effect of the molecular dipole and quadrupole moments. Phys Chem Chem Phys 2022; 24:14924-14936. [DOI: 10.1039/d2cp00756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the behaviour of water under thermal fields is important to understand thermoelectricity of solutions, aqueous suspensions, bioelectric effects or the properties of wet materials under spatially inhomogeneous...
Collapse
|
9
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Zhou S, Pan J, Guo Z, Xiang Y, Zheng H, Liu S. Controllable Flowing of a Dielectric Fluid Droplet under the Action of Corona Discharge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6967-6973. [PMID: 34081482 DOI: 10.1021/acs.langmuir.1c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer microfluidic technology is widely used in chemistry, biology, medicine, nanoparticles synthesis, and other fields. In this article, we introduce a novel method for the controllable flowing of dielectric fluid droplets. Under the action of corona discharge, the dielectric fluid droplet can be controllably driven to one or more conductive plate electrodes that are connected to the negative electrode on the substrate. Phenomena of polymerization, migration, and separation and merger are experimentally verified in detail, and the spreading speeds and steady-state time are discussed. The experimental results show that the proposed method is accurate and controllable.
Collapse
Affiliation(s)
- Shangru Zhou
- College of Electromechanical Engineering, Changsha University, Changsha 410022, China
| | | | - Zhiming Guo
- College of Electromechanical Engineering, Changsha University, Changsha 410022, China
| | - Yanghui Xiang
- College of Electromechanical Engineering, Changsha University, Changsha 410022, China
| | | | | |
Collapse
|