1
|
Cui M, Li Y, Li J, Jia N, Cao W, Li Z, Li X, Chu X. Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride. J Microencapsul 2024; 41:157-169. [PMID: 38451031 DOI: 10.1080/02652048.2024.2324810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.
Collapse
Affiliation(s)
- Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengguang Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Price SEN, Einen C, Moultos OA, Vlugt TJH, Davies CDL, Eiser E, Lervik A. Ultrasound enhanced diffusion in hydrogels: An experimental and non-equilibrium molecular dynamics study. J Chem Phys 2024; 160:154906. [PMID: 38639314 DOI: 10.1063/5.0202182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Focused ultrasound has experimentally been found to enhance the diffusion of nanoparticles; our aim with this work is to study this effect closer using both experiments and non-equilibrium molecular dynamics. Measurements from single particle tracking of 40 nm polystyrene nanoparticles in an agarose hydrogel with and without focused ultrasound are presented and compared with a previous experimental study using 100 nm polystyrene nanoparticles. In both cases, we observed an increase in the mean square displacement during focused ultrasound treatment. We developed a coarse-grained non-equilibrium molecular dynamics model with an implicit solvent to investigate the increase in the mean square displacement and its frequency and amplitude dependencies. This model consists of polymer fibers and two sizes of nanoparticles, and the effect of the focused ultrasound was modeled as an external oscillating force field. A comparison between the simulation and experimental results shows similar mean square displacement trends, suggesting that the particle velocity is a significant contributor to the observed ultrasound-enhanced mean square displacement. The resulting diffusion coefficients from the model are compared to the diffusion equation for a two-time continuous time random walk. The model is found to have the same frequency dependency. At lower particle velocity amplitude values, the model has a quadratic relation with the particle velocity amplitude as described by the two-time continuous time random walk derived diffusion equation, but at higher amplitudes, the model deviates, and its diffusion coefficient reaches the non-hindered diffusion coefficient. This observation suggests that at higher ultrasound intensities in hydrogels, the non-hindered diffusion coefficient can be used.
Collapse
Affiliation(s)
- Sebastian E N Price
- PoreLab and Department of Chemistry, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Caroline Einen
- PoreLab and Department of Physics, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Catharina de Lange Davies
- Department of Physics, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Erika Eiser
- PoreLab and Department of Physics, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Anders Lervik
- PoreLab and Department of Chemistry, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| |
Collapse
|
3
|
Shan H, Sun Q, Xie Y, Liu X, Chen X, Zhao S, Chen Z. Dialysis-functionalized microfluidic platform for in situ formation of purified liposomes. Colloids Surf B Biointerfaces 2024; 236:113829. [PMID: 38430829 DOI: 10.1016/j.colsurfb.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Continuous-flow microfluidic devices have been extensively used for producing liposomes due to their high controllability and efficient synthesis processes. However, traditional methods for liposome purification, such as dialysis, gel chromatography, and ultrafiltration, are incompatible with microfluidic devices, which would dramatically restrict the efficiency of liposome synthesis. In this study, we developed a dialysis-functionalized microfluidic platform (DFMP) for in situ formation of purified drug-loaded liposomes. The device was successfully fabricated by using a high-resolution projection micro stereolithography (PμSL) 3D printer. The integrated DFMP consists of a microfluidic mixing unit, a microfluidic dialysis unit, and a dialysis membrane, enabling the liposome preparation and purification in one device. The purified ICG-loaded liposomes prepared by DFMP had a smaller size (264.01±5.34 nm to 173.93±10.71 nm) and a higher encapsulation efficiency (EE) (43.53±0.07% to 46.07±0.67%). In vivo photoacoustic (PA) imaging experiment demonstrated that ICG-loaded liposomes purified with microfluidic dialysis exhibited a stronger penetration and accumulation (2-3 folds) in tumor sites. This work provides a new strategy for one-step production of purified drug-loaded liposomes.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Qi Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yang Xie
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China.
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Blanco-González A, Marrink SJ, Piñeiro Á, García-Fandiño R. Molecular insights into the effects of focused ultrasound mechanotherapy on lipid bilayers: Unlocking the keys to design effective treatments. J Colloid Interface Sci 2023; 650:1201-1210. [PMID: 37478737 DOI: 10.1016/j.jcis.2023.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Administration of focused ultrasounds (US) represents an attractive complement to classical therapies for a wide range of maladies, from cancer to neurological pathologies, as they are non-invasive, easily targeted, their dosage is easy to control, and they involve low risks. Different mechanisms have been proposed for their activity but the direct effect of their interaction with cell membranes is not well understood at the molecular level. This is in part due to the difficulty of designing experiments able to probe the required spatio-temporal resolutions. Here we use Molecular Dynamics (MD) simulations at two resolution levels and machine learning (ML) classification tools to shed light on the effects that focused US mechanotherapy methods have over a range of lipid bilayers. Our results indicate that the dynamic-structural response of the membrane models to the mechanical perturbations caused by the sound waves strongly depends on the lipid composition. The analyses performed on the MD trajectories contribute to a better understanding of the behavior of lipid membranes, and to open up a path for the rational design of new therapies for the long list of diseases characterized by specific lipid profiles of pathological membrane cells.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovations S.L., Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Moreno-Gomez N, Athanassiadis AG, Poortinga AT, Fischer P. Antibubbles Enable Tunable Payload Release with Low-Intensity Ultrasound. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305296. [PMID: 37515825 DOI: 10.1002/adma.202305296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 07/31/2023]
Abstract
The benefits of ultrasound are its ease-of-use and its ability to precisely deliver energy in opaque and complex media. However, most materials responsive to ultrasound show a weak response, requiring the use of high powers, which are associated with undesirable streaming, cavitation, or temperature rise. These effects hinder response control and may even cause damage to the medium where the ultrasound is applied. Moreover, materials that are currently in use rely on all-or-nothing effects, limiting the ability to fine-tune the response of the material on the fly. For these reasons, there is a need for materials that can respond to low intensity ultrasound with programmable responses. Here it is demonstrated that antibubbles are a low-intensity-ultrasound-responsive material system that can controllably release a payload using acoustic pressures in the kilopascal range. Varying their size and composition tunes the release pressure, and the response can be switched between a single release and stepwise release across multiple ultrasound pulses. Observations using confocal and high-speed microscopy reveal different ways that can lead to release. These findings lay the groundwork to design antibubbles that controllably respond to low-intensity ultrasound, opening a wide range of applications ranging from ultrasound-responsive material systems to carriers for targeted delivery.
Collapse
Affiliation(s)
- Nicolas Moreno-Gomez
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Athanasios G Athanassiadis
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Albert T Poortinga
- Polymer Technology Group, Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AZ, The Netherlands
| | - Peer Fischer
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Liu Y, Chen X, Yu DG, Liu H, Liu Y, Liu P. Electrospun PVP-Core/PHBV-Shell Fibers to Eliminate Tailing Off for an Improved Sustained Release of Curcumin. Mol Pharm 2021; 18:4170-4178. [PMID: 34582196 DOI: 10.1021/acs.molpharmaceut.1c00559] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tailing off release in the sustained release of water-insoluble curcumin (Cur) is a significant challenge in the drug delivery system. As a novel solution, core-shell nanodrug containers have aroused many interests due to their potential improvement in drug-sustained release. In this work, a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and hydrophilic polyvinylpyrrolidone (PVP) were exploited as drug delivery carriers by coaxial electrospinning, and the core-shell drug-loaded fibers exhibited improved sustained release of Cur. A cylindrical morphology and a clear core-shell structure were observed by scanning and transmission electron microscopies. The X-ray diffraction pattern and infrared spectroscopy revealed that Cur existed in amorphous form due to its good compatibility with PHBV and PVP. The in vitro drug release curves confirmed that the core-shell container manipulated Cur in a faster drug release process than that in the traditional PHBV monolithic container. The combination of the material and structure forms a novel nanodrug container with a better sustained release of water-insoluble Cur. This strategy is beneficial for exploiting more functional biomedical materials to improve the drug release behavior.
Collapse
Affiliation(s)
- Yubo Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Xiaohong Chen
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Hang Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Yuyang Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
7
|
Zhang Y, Fowlkes JB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision. Curr Med Chem 2021; 29:1331-1341. [PMID: 34348609 DOI: 10.2174/0929867328666210804092624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/07/2022]
Abstract
Ultrasound (US) is notable in the medical field as a safe and effective imaging modality due to its lack of ionizing radiation, non-invasive approach, and real-time monitoring capability. Accompanying recent progress in nanomedicine, US has been providing hope of theranostic capability not only for imaging-based diagnosis but also for US-based therapy by taking advantage of the bioeffects induced by US. Cavitation, sonoporation, thermal effects, and other cascade effects stimulated by acoustic energy conversion have contributed to medical problem-solving in the past decades although to varying degrees of efficacy in comparisons to other methods. Recently, the usage of liposomes-based nanoplatform fuels the development of nanomedicine and provides novel clinical strategies for antitumor, thrombolysis, and controlled drug release. Merging of novel liposome-based nanoplatforms and US-induced reactions has promise for a new blueprint for future medicine. In the present review article, the value of liposome-based nanoplatforms in US-related diagnosis and therapy will be discussed and summarized along with potential future directions for further investigations.
Collapse
Affiliation(s)
- Ying Zhang
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| | - J Brian Fowlkes
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| |
Collapse
|