1
|
Tan B, Hu J, Wu F. Cholesterols Induced Distinctive Entry of the Graphene Nanosheet into the Cell Membrane. ACS OMEGA 2024; 9:9216-9225. [PMID: 38434853 PMCID: PMC10905697 DOI: 10.1021/acsomega.3c08236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Graphene nanosheets are highly valued in the biomedical field due to their potential applications in drug delivery, biological imaging, and biosensors. Their biological effects on mammalian cells may be influenced by cholesterols, which are crucial components in cell membranes that take part in many vital processes. Therefore, it is particularly important to investigate the effect of cholesterols on the transport mechanism of graphene nanosheets in the cell membrane as well as the final stable configuration of graphene, which may have an impact on cytotoxicity. In this paper, the molecular details of a graphene nanosheet interacting with a 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) membrane with cholesterols were studied using molecular dynamics simulations. Results showed that the structure of the graphene nanosheet transits from the cut-in state in a pure DPPC membrane to being sandwiched between two DPPC leaflets when cholesterols reach a certain concentration. The underlying mechanism showed that cholesterols are preferentially adsorbed on the graphene nanosheet, which causes a larger disturbance to the nearby DPPC tails and thus guides the graphene nanosheet into the core of lipid bilayers to form a sandwiched structure. Our results are helpful for understanding the fundamental interaction mechanism between the graphene nanosheet and cell membrane and to explore the potential applications of the graphene nanosheet in biomedical sciences.
Collapse
Affiliation(s)
- Binbin Tan
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanmei Hu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengmin Wu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Whiting R, Stanton S, Kucheriava M, Smith AR, Pitts M, Robertson D, Kammer J, Li Z, Fologea D. Hypo-Osmotic Stress and Pore-Forming Toxins Adjust the Lipid Order in Sheep Red Blood Cell Membranes. MEMBRANES 2023; 13:620. [PMID: 37504986 PMCID: PMC10385129 DOI: 10.3390/membranes13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Lipid ordering in cell membranes has been increasingly recognized as an important factor in establishing and regulating a large variety of biological functions. Multiple investigations into lipid organization focused on assessing ordering from temperature-induced phase transitions, which are often well outside the physiological range. However, particular stresses elicited by environmental factors, such as hypo-osmotic stress or protein insertion into membranes, with respect to changes in lipid status and ordering at constant temperature are insufficiently described. To fill these gaps in our knowledge, we exploited the well-established ability of environmentally sensitive membrane probes to detect intramembrane changes at the molecular level. Our steady state fluorescence spectroscopy experiments focused on assessing changes in optical responses of Laurdan and diphenylhexatriene upon exposure of red blood cells to hypo-osmotic stress and pore-forming toxins at room temperature. We verified our utilized experimental systems by a direct comparison of the results with prior reports on artificial membranes and cholesterol-depleted membranes undergoing temperature changes. The significant changes observed in the lipid order after exposure to hypo-osmotic stress or pore-forming toxins resembled phase transitions of lipids in membranes, which we explained by considering the short-range interactions between membrane components and the hydrophobic mismatch between membrane thickness and inserted proteins. Our results suggest that measurements of optical responses from the membrane probes constitute an appropriate method for assessing the status of lipids and phase transitions in target membranes exposed to mechanical stresses or upon the insertion of transmembrane proteins.
Collapse
Affiliation(s)
- Rose Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Sevio Stanton
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Aviana R Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matt Pitts
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Robertson
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Jacob Kammer
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Department of Family Medicine, Idaho College of Osteopathic Medicine, Meridian, ID 83642, USA
| | - Zhiyu Li
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
3
|
Havlíková M, Jugl A, Kadlec M, Smilek J, Chang CH, Pekař M, Mravec F. Catanionic vesicles and their complexes with hyaluronan – A way how to tailor physicochemical properties via ionic strength. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Zhuo Y, Cheng X, Fang H, Zhang Y, Wang B, Jia S, Li W, Yang X, Zhang Y, Wang X. Medical gloves modified by a one-minute spraying process with blood-repellent, antibacterial and wound-healing abilities. Biomater Sci 2022; 10:939-946. [PMID: 35037011 DOI: 10.1039/d1bm01212f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During clinical surgery, bleeding that occurs in the operative region is inevitable. Due to the blood adhesion on ordinary medical gloves, it reduces surgery quality to a certain extent and even prolongs operation time. Herein, we show that medical blood-repellent gloves (MBRG) can be obtained by spraying the blood-repellent mist spray (MS) on the surface of ordinary medical gloves, which are available for immediate use in around one minute. After the modification, MBRG not only have a significantly higher blood repellent rate than that of ordinary medical gloves, but also can effectively inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and even promote the healing of infected wounds. MS is easy to prepare, low-toxic, and can be widely used on the surface of various medical gloves, such as rubber gloves, polyethylene film gloves, and nitrile gloves, which may have an impact on the development of future medical gloves.
Collapse
Affiliation(s)
- Yi Zhuo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Xinyan Cheng
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Hua Fang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Yi Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Bing Wang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Shuang Jia
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Weihao Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Xuetao Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Yan Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, China.
| |
Collapse
|