1
|
Wahba MA, Khaled RK, Dawy M. Tailored bimetallic Zn/Ni and Zn/Ag MCM-41 photocatalysts for enhanced visible-light photocatalytic tetracycline degradation. Sci Rep 2025; 15:5725. [PMID: 39962146 PMCID: PMC11833085 DOI: 10.1038/s41598-025-89522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Novel bimetallic-doped-MCM-41(Mobil Composition of Matter No. 41) (Zn/Ni-MCM-41 (ZNM)) and (Zn/Ag-MCM-41 (ZAM)) catalysts were synthesized and characterized for their structural, textural, morphological, and optical properties. XRD analysis confirmed metal incorporation into the MCM-41 framework, while N2 adsorption-desorption isotherms indicated a decrease in specific surface area (1210 in pure MCM-41 to 722.86 and 700.36 m2/g for ZNM and ZAM, respectively) due to partial pore filling. TEM images verified this finding. Boosted absorption extending into the visible light region was detected in the metal incorporated (ZNM and ZAM) samples with additional band gaps, related to transitions in Zn2+, Ag+ and Ni2+ ions. Photoluminescence studies revealed efficient charge carrier separation in ZNM and ZAM. Both catalysts exhibited superior tetracycline (TC) removal from aqueous solution with efficiency (95.59% and 95.30% within one hour for ZNM and ZAM, respectively) with pronouncing visible light photocatalytic capability compared to pure MCM-41. The degradation process followed pseudo-first-order kinetics. The enhanced photocatalytic activity of ZNM and ZAM is attributed to the synergistic effects of metal incorporation, increased light absorption, and efficient charge carrier dynamics. Additionally, a possible photocatalytic mechanism for degradation of TC over ZNM and ZAM has been proposed and involvement of superoxide radicals (O2•-) and holes (h+) as reactive species is elucidated by radical trapping experiments. A distinct pH-dependent trend was observed in TC degradation efficiency using the ZAM photocatalyst. The efficiency gradually increased with increasing pH until reaching a maximum at pH 7, followed by a decline at higher pH values. These results demonstrate the potential of ZNM and ZAM as promising materials for removal of tetracycline antibiotic from water.
Collapse
Affiliation(s)
- Mohammed Ahmed Wahba
- Department of Inorganic Chemistry, National Research Centre, 33 El Buhouth St. (former Eltahrir st.), Dokki, Giza, 12622, Egypt.
| | - Rabab K Khaled
- Department of Physical Chemistry, National Research Centre, 33 El Buhouth St., (former Eltahrir st.), Dokki, Giza, Egypt.
| | - Magdah Dawy
- Department of Physical Chemistry, National Research Centre, 33 El Buhouth St., (former Eltahrir st.), Dokki, Giza, Egypt
| |
Collapse
|
2
|
Hernandez-Rodriguez G, Tenorio-Garcia E, Ettelaie R, Lishchuk SV, Harbottle D, Murray BS, Sarkar A. Demulsification of Pickering emulsions: advances in understanding mechanisms to applications. SOFT MATTER 2024; 20:7344-7356. [PMID: 39258321 DOI: 10.1039/d4sm00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pickering emulsions are ultra-stable dispersions of two immiscible fluids stabilized by solid or microgel particles rather than molecular surfactants. Although their ultra-stability is a signature performance indicator, often such high stability hinders their demulsification, i.e., prevents the droplet coalescence that is needed for phase separation on demand, or release of the active ingredients encapsulated within droplets and/or to recover the particles themselves, which may be catalysts, for example. This review aims to provide theoretical and experimental insights on demulsification of Pickering emulsions, in particular identifying the mechanisms of particle dislodgment from the interface in biological and non-biological applications. Even though the adhesion of particles to the interface can appear irreversible, it is possible to detach particles via (1) alteration of particle wettability, and/or (2) particle dissolution, affecting the particle radius by introducing a range of physical conditions: pH, temperature, heat, shear, or magnetic fields; or via treatment with chemical/biochemical additives, including surfactants, enzymes, salts, or bacteria. Many of these changes ultimately influence the interfacial rheology of the particle-laden interface, which is sometimes underestimated. There is increasing momentum to create responsive Pickering particles such that they offer switchable wettability (demulsification and re-emulsification) when these conditions are changed. Demulsification via wettability alteration seems like the modus operandi whilst particle dissolution remains only partially explored, largely dominated by food digestion-related studies where Pickering particles are digested using gastrointestinal enzymes. Overall, this review aims to stimulate new thinking about the control of demulsification of Pickering emulsions for release of active ingredients associated with these ultra-stable emulsions.
Collapse
Affiliation(s)
- Gloria Hernandez-Rodriguez
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Elizabeth Tenorio-Garcia
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Rammile Ettelaie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Sergey V Lishchuk
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Xie D, Jiang Y. The mediated rheological properties of emulsions stabilized by thread-like mesoporous silica nanoparticles in combination with CTAB. SOFT MATTER 2022; 18:7782-7793. [PMID: 36178243 DOI: 10.1039/d2sm01064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The combination of hydrophilic particles and surfactants provides a simple method to stabilize Pickering emulsions. The type and concentration of the particles and surfactants play important roles in the microstructure and rheological properties of the resulting emulsions. Herein, stable n-octane-in-water Pickering emulsions with tunable rheological properties were prepared using thread-like mesoporous silica nanoparticles (TMSNPs) and cetyltrimethylammonium bromide (CTAB) as emulsifiers. The CTAB concentration (CCTAB) highly affected the properties of emulsions, which were divided into three regions according to the results of large-amplitude oscillatory shear responses. In the low CCTAB range (0.03 mmol L-1 ≤ CCTAB ≤ 0.1 mmol L-1), the emulsions gelled with a high storage modulus . With CCTAB increasing, the value of emulsions, measured by the small-amplitude oscillatory shear, decreased from approximately 1000 Pa at 0.03 mmol L-1 to 100 Pa at 0.3 mmol L-1 and then to 40 Pa at 3 mmol L-1. A three-dimensional percolation structure formed by cross-linking of TMSNPs in the emulsion continuous phase was observed via cryo-SEM in the low CCTAB range but not in the intermediate and high CCTAB ranges. The mechanisms showing the synergistic stability and rheological properties of these emulsions were investigated. It is attributed to the unique morphology of TMSNPs and the competitive adsorption of CTAB molecules at the oil-water interface and on the nanoparticle surface in different CCTAB ranges. Moreover, owing to the porosity and hydrogen-bonding interactions between the TMSNPs and the confinement effect of the flocculated oil droplets, the viscoelasticity of the emulsions could be mediated by adding a trace amount of acid/base. This study provides a new strategy to regulate the rheological properties of emulsions. It also expands the Pickering emulsion systems with tunable rheological properties.
Collapse
Affiliation(s)
- Danhua Xie
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, Fujian, China.
| | - Yulong Jiang
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, Fujian, China.
| |
Collapse
|
4
|
Xie D, Jiang Y, Li K, Yang X, Zhang Y. Pickering Emulsions Stabilized by Mesoporous Nanoparticles with Different Morphologies in Combination with DTAB. ACS OMEGA 2022; 7:29153-29160. [PMID: 36033667 PMCID: PMC9404459 DOI: 10.1021/acsomega.2c03215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 05/14/2023]
Abstract
The morphology of nanoparticles plays a significant role in the properties and applications of Pickering emulsions. Oil-in-water (O/W) Pickering emulsions were prepared using spherical, rod-like, and thread-like mesoporous silica nanoparticles (MSNPs) in combination with the cationic surfactant dodecyltrimethylammonium bromide (DTAB) as a stabilizer. The effects of nanoparticle morphology on the stability and stimuli-responsive properties of Pickering emulsions were investigated. For spherical and rod-like MSNP systems, stable Pickering emulsions were obtained at DTAB concentrations above 0.2 mmol·L-1. Stable Pickering emulsions containing thread-like MSNPs were produced at lower DTAB concentrations of approximately 0.1 mmol·L-1. The droplets with thread-like MSNPs were extremely large with an average diameter around 700 μm at DTAB concentrations of 0.1-0.3 mmol·L-1, which were approximately 20 times larger than those of conventional droplets. Scanning electron microscopy (SEM) images showed that all three types of MSNPs were located at the O/W interfaces. Irrespective of the morphology of the MSNPs, all the stable Pickering emulsions retained their original appearance for more than 6 months. By adding NaOH and HCl alternatively, the Pickering emulsions containing spherical and rod-like MSNPs could be switched between unstable and stable states more than 60 times. The Pickering emulsions containing thread-like MSNPs, by contrast, could have their droplet size switched between large and small more than 10 times without any obvious phase separation. The high anisotropy of thread-like MSNPs contributed to the low interface curvature of the droplets. This study revealed the relationship between the morphology of MSNPs and the characteristics of Pickering emulsions. These results enrich our knowledge about the formulation of Pickering emulsions and expand their applications.
Collapse
|
5
|
Xie D, Jiang Y, Song B, Yang X. Switchable Pickering foams stabilized by mesoporous nanosilica hydrophobized in situ with a Gemini surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Zhang L, Zhang G, Ge J, Jiang P, Ding L. pH- and thermo-responsive Pickering emulsion stabilized by silica nanoparticles and conventional nonionic copolymer surfactants. J Colloid Interface Sci 2022; 616:129-140. [DOI: 10.1016/j.jcis.2022.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
|
8
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|