1
|
Martinez AA, Arneodo Larochette PP, Gennari FC, Gasnier A. The Structure-Function Relationship of Branched Polyethylenimine Impregnated over Mesoporous Carbon Aerogels: An In-Depth Thermogravimetric Insight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17133-17145. [PMID: 37975861 DOI: 10.1021/acs.langmuir.3c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We present a comprehensive thermogravimetric analysis (TGA) of polyethylenimine (PEI)-impregnated resorcinol-formaldehyde (RF) aerogels. While numerous studies focus on PEI-impregnated SBA, RF materials have been less examined, despite their interest and specificities. As most articles on PEI-impregnated porous materials follow typical experimental methods defined for SBA, particularities of RF-PEI materials could remain unheeded. The design of nonisothermal TGA protocols, completed with nitrogen isotherms, based on the systematic filling of the matrix delivers a fundamental understanding of the relationship between the structure and function. This study demonstrates (i) the competition between the matrix and PEI for CO2-physisorption (φ) and CO2-chemisorption (χ), (ii) the hysteresis ([Formula: see text]) of CO2 capture at low temperature attributed to the kinetic (K) hindrance of CO2 diffusion (D) through PEI film/plugs limiting the chemisorption, and (iii) the thermodynamic (θ) equilibrium limiting the capture at high temperature. At variance with SBA-PEI materials, the first layers of PEI in RF are readily available for CO2 capture given that this matrix does not covalently bind PEI as SBA. A facile method allows the discrimination between physi- and chemisorption, exhibiting how the former decreases with PEI coverage. The CO2 capture hysteresis, while seldom introduced or discussed, underlines that the commonly accepted operating temperature of the "maximum capture" is based on an incomplete experiment. Through isotherm adsorption analysis, we correlate the evolution of this maximum to the morphological distribution of PEI. This contribution highlights the specificities of RF-PEI and the advantages of our TGA protocol in understanding the structure/function relationship of this kind of material by avoiding the typical direct applications of SBA-specific protocols. The method is straightforward, does not need large-scale facilities, and is applicable to other materials. Its easiness and rapidness are suited to high-volume studies, befitting for the comprehensive evaluation of interacting factors such as the matrix's nature, pore size, and PEI weight.
Collapse
Affiliation(s)
- Alejandra A Martinez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto de Nanociencia y Nanotecnología, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Pierre P Arneodo Larochette
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Fabiana C Gennari
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Aurelien Gasnier
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto de Nanociencia y Nanotecnología, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| |
Collapse
|
2
|
Liu Z, Li X, Shi D, Guo F, Zhao G, Hei Y, Xiao Y, Zhang X, Peng YL, Sun W. Superior Selective CO 2 Adsorption and Separation over N 2 and CH 4 of Porous Carbon Nitride Nanosheets: Insights from GCMC and DFT Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6613-6622. [PMID: 37098239 DOI: 10.1021/acs.langmuir.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Development of high-performance materials for the capture and separation of CO2 from the gas mixture is significant to alleviate carbon emission and mitigate the greenhouse effect. In this work, a novel structure of C9N7 slit was developed to explore its CO2 adsorption capacity and selectivity using Grand Canonical Monte Carlo (GCMC) and Density Functional Theory (DFT) calculations. Among varying slit widths, C9N7 with the slit width of 0.7 nm exhibited remarkable CO2 uptake with superior CO2/N2 and CO2/CH4 selectivity. At 1 bar and 298 K, a maximum CO2 adsorption capacity can be obtained as high as 7.06 mmol/g, and the selectivity of CO2/N2 and CO2/CH4 was 41.43 and 18.67, respectively. In the presence of H2O, the CO2 uptake of C9N7 slit decreased slightly as the water content increased, showing better water tolerance. Furthermore, the underlying mechanism of highly selective CO2 adsorption and separation on the C9N7 surface was revealed. The closer the adsorption distance, the stronger the interaction energy between the gas molecule and the C9N7 surface. The strong interaction between the C9N7 nanosheet and the CO2 molecule contributes to its impressive CO2 uptake and selectivity performance, suggesting that the C9N7 slit could be a promising candidate for CO2 capture and separation.
Collapse
Affiliation(s)
- Zilong Liu
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Xue Li
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Di Shi
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Fengzhi Guo
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ge Zhao
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yanxiao Hei
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yufei Xiao
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiao Zhang
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Yun Lei Peng
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Weichao Sun
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Lyngby 2800 Kgs, Denmark
| |
Collapse
|
3
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|