1
|
Sharma VK, Srinivasan H, Gupta J, Mitra S. Lipid lateral diffusion: mechanisms and modulators. SOFT MATTER 2024; 20:7763-7796. [PMID: 39315599 DOI: 10.1039/d4sm00597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral diffusion of lipids within a membrane is of paramount importance, serving as a central mechanism in numerous physiological processes including cell signaling, membrane trafficking, protein activity regulation, and energy transduction pathways. This review offers a comprehensive overview of lateral lipid diffusion in model biomembrane systems explored through the lens of neutron scattering techniques. We examine diverse models of lateral diffusion and explore the various factors influencing this fundamental process in membrane dynamics. Additionally, we offer a thorough summary of how different membrane-active compounds, including drugs, antioxidants, stimulants, and membrane proteins, affect lipid lateral diffusion. Our analysis unveils the intricate interplay between these additives and membranes, shedding light on their dynamic interactions. We elucidate that this interaction is governed by a complex combination of multiple factors including the physical state and charge of the membrane, the concentration of additives, the molecular architecture of the compounds, and their spatial distribution within the membrane. In conclusion, we briefly discuss the future directions and areas requiring further investigation in the realm of lateral lipid diffusion, highlighting the need to study more realistic membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
2
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Peraza J, Hector RC, Lee S, Terhaar HM, Knych HK, Wotman KL. Ocular penetration of oral acetaminophen in horses. Equine Vet J 2023; 55:899-904. [PMID: 36482840 DOI: 10.1111/evj.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acetaminophen (paracetamol) is increasingly used to treat painful conditions in horses but its ocular penetration has not been studied. OBJECTIVES To determine whether orally administered acetaminophen penetrates the aqueous humour of the normal equine eye and report an aqueous humour:serum acetaminophen concentration ratio in horses. STUDY DESIGN In vivo experiment. METHODS Six privately owned horses with normal ophthalmic examinations weighing 568 ± 65 kg (mean ± standard deviation) and aged 11 ± 4 years were given 20 mg/kg acetaminophen orally every 12 h for a total of six doses. Physical exam parameters were recorded prior to, during, and after the dosing period. One hour after the final dose, horses were sedated and simultaneous aqueous humour and serum samples were collected and analysed for acetaminophen concentrations and selected eicosanoids. An aqueous humour:serum acetaminophen concentration ratio was calculated. A second aqueous humour sample was taken and analysed for eicosanoid concentrations 3 months after acetaminophen dosing. Physical exam data were compared between time points using a mixed model analysis (significance p < 0.05). RESULTS Acetaminophen was detected in both serum and aqueous humour of all horses and mean ± standard deviation aqueous humour:serum acetaminophen concentration ratio was 44.9 ± 15.9%. No significant changes in physical exam parameters occurred during or after dosing. Eicosanoids were not detected in aqueous humour at any sampling point. MAIN LIMITATIONS Presence of acetaminophen in the aqueous humour may not relate to clinical effect. A therapeutic level of acetaminophen has not been determined in horses, and the absence of ocular inflammation does not reflect conditions in which acetaminophen may be used. CONCLUSIONS Acetaminophen readily penetrates the aqueous humour of the normal equine eye after consecutive oral dosing. Further study is required to determine whether acetaminophen is useful in the treatment of ocular pain and inflammation.
Collapse
Affiliation(s)
- Jacky Peraza
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rachel C Hector
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sera Lee
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hannah M Terhaar
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Heather K Knych
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kathryn L Wotman
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Nithiyanandam S, Evan Prince S. Caesalpinia bonducella mitigates oxidative damage by paracetamol intoxication in the kidney and intestine via modulating pro/anti-inflammatory and apoptotic signaling: an In vivo mechanistic insight. 3 Biotech 2023; 13:176. [PMID: 37188289 PMCID: PMC10175523 DOI: 10.1007/s13205-023-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Protracted use of paracetamol at therapeutic/toxic doses readily induces major organ toxicity and poor clinical efficacy. Caesalpinia bonducella seeds possess a diverse range of biological and therapeutic activities. Thus, our study aimed to scrutinize the toxic effects of paracetamol and the potential renal and intestinal protective effects of Caesalpinia bonducella seed extract (CBSE). To Wistar rats, CBSE was administered for 8 days (300 mg/kg, p.o.) with or without paracetamol (2000 mg/kg, p.o.) on the 8th day. Pertinent toxicity assessments in the kidney and intestine were analyzed at the end of the study. The CBASE's phytochemical components were examined using gas chromatography-mass spectrometry (GC-MS). After the study period, study findings evidenced that paracetamol intoxication induced elevation of renal enzyme indicators, oxidative damage, imbalance with the pro/anti-inflammatory production and pro/anti-apoptotic mediators, and tissue injury; all repercussions were alleviated by pre-treatment with CBASE. CBASE considerably reduced (P < 0.05) paracetamol-induced kidney and intestine injury by limiting caspase-8/3 signaling and amplification of inflammation in renal and intestinal tissue by significantly reducing pro-inflammatory cytokine production. As per the GC-MS report, three main bioactive components-Piperine, Isocaryophyllene, and Tetradec-13-en-11-yn-1-ol were predominant and have protective activities. Our study ascertains that CBSE pre-treatment exerts potent renal and intestine protection against paracetamol intoxication. Thus, CBSE could be a prospective therapeutic candidate for protecting the kidney and intestine from the severity of paracetamol intoxication.
Collapse
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India
| | - Sabina Evan Prince
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India
| |
Collapse
|
5
|
Nagao M, Seto H. Neutron scattering studies on dynamics of lipid membranes. BIOPHYSICS REVIEWS 2023; 4:021306. [PMID: 38504928 PMCID: PMC10903442 DOI: 10.1063/5.0144544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 03/21/2024]
Abstract
Neutron scattering methods are powerful tools for the study of the structure and dynamics of lipid bilayers in length scales from sub Å to tens to hundreds nm and the time scales from sub ps to μs. These techniques also are nondestructive and, perhaps most importantly, require no additives to label samples. Because the neutron scattering intensities are very different for hydrogen- and deuterium-containing molecules, one can replace the hydrogen atoms in a molecule with deuterium to prepare on demand neutron scattering contrast without significantly altering the physical properties of the samples. Moreover, recent advances in neutron scattering techniques, membrane dynamics theories, analysis tools, and sample preparation technologies allow researchers to study various aspects of lipid bilayer dynamics. In this review, we focus on the dynamics of individual lipids and collective membrane dynamics as well as the dynamics of hydration water.
Collapse
Affiliation(s)
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
6
|
Kangarlou B, Hoy D, Scott HL, Pingali SV, Khalil N, Chung B, Katsaras J, Nieh MP. Water Content in Nanoparticles Determined by Small-Angle Neutron Scattering and Light Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:227-235. [PMID: 36580910 DOI: 10.1021/acs.langmuir.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The amount of water in therapeutic nanoparticles (NPs) is of great importance to the pharmaceutical industry, as water content reflects the volume occupied by the solid components. For example, certain biomolecules, such as mRNA, can undergo conformational change or degradation when exposed to water. Using static light scattering (SLS) and dynamic light scattering (DLS), we estimated the water content of NPs, including extruded liposomes of two different sizes and polystyrene (PS) Latex NPs. In addition, we used small-angle neutron scattering (SANS) to independently access the water content of the samples. The water content of NPs estimated by SLS/DLS was systematically higher than that from SANS. The discrepancy is most likely attributed to the larger radius determined by DLS, in contrast to the SANS-derived radius observed by SANS. However, because of low accessibility to the neutron facilities, we validate the combined SLS/DLS to be a reasonable alternative to SANS for determining the water (or solvent) content of NPs.
Collapse
Affiliation(s)
- Behrad Kangarlou
- Materials Science Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| | - Donyeil Hoy
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Haden L Scott
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Nora Khalil
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Benjamin Chung
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut06269, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Mu-Ping Nieh
- Materials Science Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
7
|
Doole FT, Gupta S, Kumarage T, Ashkar R, Brown MF. Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:61-85. [PMID: 36988877 DOI: 10.1007/978-3-031-21547-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.
Collapse
Affiliation(s)
- Fathima T Doole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sudipta Gupta
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Teshani Kumarage
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Rana Ashkar
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
High-Dose Acetaminophen Alters the Integrity of the Blood-Brain Barrier and Leads to Increased CNS Uptake of Codeine in Rats. Pharmaceutics 2022; 14:pharmaceutics14050949. [PMID: 35631535 PMCID: PMC9144323 DOI: 10.3390/pharmaceutics14050949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
The consumption of acetaminophen (APAP) can induce neurological changes in human subjects; however, effects of APAP on blood-brain barrier (BBB) integrity are unknown. BBB changes by APAP can have profound consequences for brain delivery of co-administered drugs. To study APAP effects, female Sprague-Dawley rats (12-16 weeks old) were administered vehicle (i.e., 100% dimethyl sulfoxide (DMSO), intraperitoneally (i.p.)) or APAP (80 mg/kg or 500 mg/kg in DMSO, i.p.; equivalent to a 900 mg or 5600 mg daily dose for a 70 kg human subject). BBB permeability was measured via in situ brain perfusion using [14C]sucrose and [3H]codeine, an opioid analgesic drug that is co-administered with APAP (i.e., Tylenol #3). Localization and protein expression of tight junction proteins (i.e., claudin-5, occludin, ZO-1) were studied in rat brain microvessels using Western blot analysis and confocal microscopy, respectively. Paracellular [14C]sucrose "leak" and brain [3H]codeine accumulation were significantly enhanced in rats treated with 500 mg/kg APAP only. Additionally, claudin-5 localization and protein expression were altered in brain microvessels isolated from rats administered 500 mg/kg APAP. Our novel and translational data show that BBB integrity is altered following a single high APAP dose, results that are relevant to patients abusing or misusing APAP and/or APAP/opioid combination products.
Collapse
|
11
|
Dikkumbura A, Aucoin AV, Ali RO, Dalier A, Gilbert DW, Schneider GJ, Haber LH. Influence of Acetaminophen on Molecular Adsorption and Transport Properties at Colloidal Liposome Surfaces Studied by Second Harmonic Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3852-3859. [PMID: 35298170 PMCID: PMC8969770 DOI: 10.1021/acs.langmuir.2c00086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Time-resolved second harmonic generation (SHG) spectroscopy is used to investigate acetaminophen (APAP)-induced changes in the adsorption and transport properties of malachite green isothiocyanate (MGITC) dye to the surface of unilamellar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes in an aqueous colloidal suspension. The adsorption of MGITC to DOPC liposome nanoparticles in water is driven by electrostatic and dipole-dipole interactions between the positively charged MGITC molecules and the zwitterionic phospholipid membranes. The SHG intensity increases as the added MGITC dye concentration is increased, reaching a maximum as the MGITC adsorbate at the DOPC bilayer interface approaches a saturation value. The experimental adsorption isotherms are fit using the modified Langmuir model to obtain the adsorption free energies, adsorption equilibrium constants, and the adsorbate site densities to the DOPC liposomes both with and without APAP. The addition of APAP is shown to increase MGITC adsorption to the liposome interface, resulting in a larger adsorption equilibrium constant and a higher adsorption site density. The MGITC transport times are also measured, showing that APAP decreases the transport rate across the DOPC liposome bilayer, especially at higher MGITC concentrations. Studying molecular interactions at the colloidal liposome interface using SHG spectroscopy provides a detailed foundation for developing potential liposome-based drug-delivery systems.
Collapse
Affiliation(s)
- Asela
S. Dikkumbura
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandra V. Aucoin
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rasidah O. Ali
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aliyah Dalier
- Southeastern
Louisiana University, Hammond, Louisiana 70402, United States
| | - Dylan W. Gilbert
- Southeastern
Louisiana University, Hammond, Louisiana 70402, United States
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Louis H. Haber
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
12
|
Cai B, Li S, Jiang W, Zhou Y. pH-Controlled Stereoregular Polymerization of Poly(methyl methacrylate) in Vesicle Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12746-12752. [PMID: 34672599 DOI: 10.1021/acs.langmuir.1c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a pH-controlled stereoregular polymerization of methyl methacrylate (MMA) inside the membrane of H20-COOH hyperbranched polymer vesicles using a common radical polymerization process. The vesicle size decreases from 745 to 214 nm with an increase of solution pH from 2.60 to 7.26, and the isotacticity of the obtained polymethyl methacrylates (PMMAs) is accordingly elevated from 9 to 35%. The obtained isotactic-rich PMMAs show a lower glass transition temperature depending on the isotacticity than the commercial random PMMAs. A mechanism study according to the in situ Fourier transform infrared measurements indicates that the control of polymer isotacticity results from the monomer conformation confined effect inside the thin vesicle membranes. The present study provides a new method to realize the preparation of isotactic polymers with the characteristics of facile synthesis, pH controllability, and a green polymerization process in aqueous solution as well as under mild reaction conditions of ambient temperature and pressure.
Collapse
Affiliation(s)
- Beike Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|