1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Imwiset KJ, Dudko V, Markus P, Papastavrou G, Breu J, Ogawa M. Forceless spontaneous delamination of high-aspect ratio fluorohectorite into monolayer nanosheets in chloroform. Chem Commun (Camb) 2024; 60:6383-6386. [PMID: 38814048 DOI: 10.1039/d4cc00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One-dimensional dissolution of a layered compound in a nonpolar organic solvent is reported for the first time. A high-aspect ratio fluorohectorite modified with a cationic surfactant (dioctadecyldimethylammonium) showed spontaneous delamination into monolayer nanosheets in chloroform.
Collapse
Affiliation(s)
- Kamonnart Jaa Imwiset
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand.
| | - Volodymyr Dudko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Paul Markus
- Physical Chemistry II and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Georg Papastavrou
- Physical Chemistry II and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand.
| |
Collapse
|
3
|
Sulistiawati S, Kristina Enggi C, Wiyulanda Iskandar I, Rachmad Saputra R, Sartini S, Rifai Y, Rahman L, Aswad M, Dian Permana A. Bioavailability enhancement of sildenafil citrate via hydrogel-forming microneedle strategy in combination with cyclodextrin complexation. Int J Pharm 2024; 655:124053. [PMID: 38537922 DOI: 10.1016/j.ijpharm.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Sildenafil citrate (SIL) as a first-line treatment for erectile dysfunction is currently reported to have poor solubility and bioavailability. Moreover, SIL undergoes first-pass metabolism when taken orally and its injection can lead to discomfort. In this study, we introduce a novel transdermal delivery system that integrates hydrogel-forming microneedles with the inclusion complex tablet reservoir. The hydrogel-forming microneedle was prepared from a mixture of polymers and crosslinkers through a crosslinking process. Importantly, the formulations showed high swelling capacity (>400 %) and exhibited adequate mechanical and penetration properties (needle height reduction < 10 %), penetrating up to five layers of Parafilm® M (assessed to reach the dermis layer). Furthermore, to improve the solubility of SIL in the reservoir, the SIL was pre-complexed with β-cyclodextrin. Molecular docking analysis showed that SIL was successfully encapsulated into the β-cyclodextrin cavity and was the most suitable conformation compared to other CD derivatives. Moreover, to maximize SIL delivery, sodium starch glycolate was also added to the reservoir formulation. As a proof of concept, in vivo studies demonstrated the effectiveness of this concept, resulting in a significant increase in AUC (area under the curve) compared to that obtained after administration of pure SIL oral suspension, inclusion complex, and Viagra® with relative bioavailability > 100 %. Therefore, the approach developed in this study could potentially increase the efficacy of SIL in treating erectile dysfunction by being non-invasive, safe, avoiding first-pass metabolism, and increasing drug bioavailability.
Collapse
Affiliation(s)
| | | | | | - Rizki Rachmad Saputra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Central Kalimantan 73111, Indonesia
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
4
|
Dechnarong N, Teepakakorn A(P, Ogawa M. Preparation of Porous Aggregates of Smectite by Spray Drying Combined with the Intercalation of a Water-soluble Polymer. CHEM LETT 2023. [DOI: 10.1246/cl.220525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Nattanee Dechnarong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Aranee (Pleng) Teepakakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|