1
|
Baachaoui S, Hajlaoui R, Aoun SB, Fortunelli A, Sementa L, Raouafi N. Covalent surface modification of single-layer graphene-like BC 6N nanosheets with reactive nitrenes for selective ammonia sensing via DFT modeling. NANOTECHNOLOGY 2024; 35:425501. [PMID: 39025079 DOI: 10.1088/1361-6528/ad64da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Novel graphene-like nanomaterials with a non-zero bandgap are important for the design of gas sensors. The selectivity toward specific targets can be tuned by introducing appropriate functional groups on their surfaces. In this study, we use first-principles simulations, in the form of density functional theory (DFT), to investigate the covalent functionalization of a single-layer graphitized BC6N with azides to yield aziridine-functionalized adducts and explore their possible use to realize ammonia sensors. First, we determine the most favorable sites for physical adsorption and chemical reaction of methylnitrene, arising from the decomposition of methylazide, onto a BC6N monolayer. Then, we examine the thermodynamics of the [1 + 2]-cycloaddition reaction of various phenylnitrenes and perfluorinated phenylnitrenes para-substituted with (R = CO2H, SO3H) groups, demonstrating favorable energetics. We also monitor the effect of the functionalization on the electronic properties of the nanosheets via density of states and band structure analyses. Finally, we test four dBC6N to gBC6N substrates in the sensing of ammonia. We show that, thanks to their hydrogen bonding capabilities, the functionalized BC6N can selectively detect ammonia, with interaction energies varying from -0.54 eV to -1.37 eV, even in presence of competing gas such as CO2and H2O, as also confirmed by analyzing the change in the electronic properties and the values of recovery times near ambient temperature. Importantly, we model the conductance of a selected substrate alone and in presence of NH3to determine its effect on the integrated current, showing that humidity and coverage conditions should be properly tuned to use HO2C-functionalized BC6N-based nanomaterials to develop selective gas sensors for ammonia.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Rabiaa Hajlaoui
- Advanced Materials and Quantum Phenomena Laboratory, Physics Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, PO Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | - Luca Sementa
- Consiglio Nazionale delle Ricerche, CNR-ICCOM & IPCF, 56124 Pisa, Italy
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| |
Collapse
|
2
|
Zimmerer C, Simon F, Putzke S, Drechsler A, Janke A, Krause B. N-Type Coating of Single-Walled Carbon Nanotubes by Polydopamine-Mediated Nickel Metallization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2813. [PMID: 37887963 PMCID: PMC10610227 DOI: 10.3390/nano13202813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have unique thermal and electrical properties. Coating them with a thin metal layer can provide promising materials for many applications. This study presents a bio-inspired, environmentally friendly technique for CNT metallization using polydopamine (PDA) as an adhesion promoter, followed by electroless plating with nickel. To improve the dispersion in the aqueous reaction baths, part of the SWCNTs was oxidized prior to PDA coating. The SWCNTs were studied before and after PDA deposition and metallization by scanning and transmission electron microscopy, scanning force microscopy, and X-ray photoelectron spectroscopy. These methods verified the successful coating and revealed that the distribution of PDA and nickel was significantly improved by the prior oxidation step. Thermoelectric characterization showed that the PDA layer acted as a p-dopant, increasing the Seebeck coefficient S of the SWCNTs. The subsequent metallization decreased S, but no negative S-values were reached. Both coatings affected the volume conductivity and the power factor, too. Thus, electroless metallization of oxidized and PDA-coated SWCNTs is a suitable method to create a homogeneous metal layer and to adjust their conduction type, but more work is necessary to optimize the thermoelectric properties.
Collapse
Affiliation(s)
- Cordelia Zimmerer
- Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - Frank Simon
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - Sascha Putzke
- Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - Astrid Drechsler
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - Andreas Janke
- Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - Beate Krause
- Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
3
|
Hu Y, Pu J, Hu Y, Zi Y, Chen H, Wang M, Huang W. Construction of Reinforced Self-Cleaning and Efficient Photothermal PDMS@GDY@Cu Sponges toward Anticorrosion and Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2381. [PMID: 37630965 PMCID: PMC10459430 DOI: 10.3390/nano13162381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Copper (Cu)-based materials are widely used in many fields from industry to life, including marine, medical apparatus and instruments, and microelectronic devices owing to their superior thermal, electrical, and mechanical properties. However, the interaction of copper with aggressive and fouling liquids under normal circumstances easily brings about severe bacterial accumulation, resulting in undesirable functionality degeneration and bacterial infections. In this contribution, we reported a novel copper-based sponge, polydimethylsiloxane (PDMS)@graphdiyne (GDY)@Cu, constructed by in situ synthesis of GDY on a commercial Cu sponge, followed by the modification of PDMS. The as-fabricated PDMS@GDY@Cu sponge not only possesses excellent self-cleaning activity against the pollution of daily drinks and dirt due to an improved static contact angle (~136°), but also display a remarkably enhanced anticorrosion performance, attributed to intimate coverage of chemically stable GDY and PDMS on the Cu sponge. Based on high photothermal effect of GDY, the PDMS@GDY@Cu sponge also displays significantly improved antibacterial activities under irradiation. In addition, due to excellent chemical stability of PDMS and GDY, self-cleaning behavior and photothermal-assisted antibacterial performance are well maintained after long-term attack of bacteria. These results demonstrate that GDY-based functional coatings hold great promises in the protection of copper devices under harsh conditions.
Collapse
Affiliation(s)
- Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yingzi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongyan Chen
- Engineering Training Center, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
4
|
Hu Y, Xu Z, Hu Y, Hu L, Zi Y, Wang M, Feng X, Huang W. Bismuth Quantum Dot (Bi QD)/Polydimethylsiloxane (PDMS) Nanocomposites with Self-Cleaning and Antibacterial Activity for Dental Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213911. [PMID: 36364687 PMCID: PMC9656007 DOI: 10.3390/nano12213911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 06/01/2023]
Abstract
In the oral microenvironment, bacteria colonies are easily aggregated on the tooth-restoration surface, in the manner of a biofilm, which usually consists of heterogeneous structures containing clusters of a variety of bacteria embedded in an extracellular matrix, leading to serious recurrent caries. In this contribution, zero-dimensional (0D) bismuth (Bi) quantum dots (QDs) synthesized by a facile solvothermal method were directly employed to fabricate a Bi QD/polydimethylsiloxane (PDMS)-modified tooth by simple curing treatment. The result demonstrates that the as-fabricated Bi QD/PDMS-modified tooth at 37 °C for 120 min not only showed significantly improved hydrophobic performance with a water contact angle of 103° and 115° on the tooth root and tooth crown, respectively, compared to that (~20° on the tooth root, and ~5° on the tooth crown) of the pristine tooth, but also exhibited excellent antibacterial activity against S. mutans, superior biocompatibility, and biosafety. In addition, due to the highly photothermal effect of Bi QDs, the antibacterial activity of the as-fabricated Bi QD/PDMS-modified tooth could be further enhanced under illumination, even at a very low power density (12 mW cm-2). Due to the facile fabrication, excellent hydrophobicity, superior antibacterial activity, and biocompatibility and biosafety of the Bi QD/PDMS-modified tooth, it is envisioned that the Bi QD/PDMS-modified tooth with a fascinating self-cleaning and antibacterial performance can pave the way to new designs of versatile multifunctional nanocomposites to prevent secondary caries in the application of dental restoration.
Collapse
Affiliation(s)
- Yingzi Hu
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Zhiliang Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Chen H, Wang M, Huang W. Two-Dimensional Selenium Nanosheet-Based Sponges with Superior Hydrophobicity and Excellent Photothermal Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3756. [PMID: 36364530 PMCID: PMC9657928 DOI: 10.3390/nano12213756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Photothermally assisted superhydrophobic materials play an important role in a variety of applications, such as oil purification, waste oil collection, and solar desalination, due to their facile fabrication, low-cost, flexibility, and tunable thermal conversion. However, the current widely used superhydrophobic sponges with photothermal properties are usually impaired by a high loading content of photothermal agents (e.g., gold or silver nanoparticles, carbon nanotubes), low photothermal efficiency, and require harmful processes for modification. Here, a one-pot, simple composite consisting of two-dimensional (2D) selenium (Se) nanosheets (NSs) and commercially used melamine sponge (MS) is rationally designed and successfully fabricated by a facile dip-coating method via physical adsorption between 2D Se NSs and MS. The loading content of 2D Se NSs on the skeleton of the MS can be well controlled by dipping cycle. The results demonstrate that after the modification of 2D Se NSs on the MS, the wettability transition from hydrophilicity to hydrophobicity can be easily achieved, even at a very low loading of 2D Se NSs, and the highly stable photothermal conversion of the as-fabricated composites can be realized with a maximum temperature of 111 ± 3.2 °C due to the excellent photothermal effect of 2D Se NSs. It is anticipated that this composite will afford new design strategies for multifunctional porous structures for versatile applications, such as high-performance solar desalination and photothermal sterilization.
Collapse
Affiliation(s)
- Hongyan Chen
- Engineering Training Center, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Zhang Y, Tian H, Sui X, Wang X, Zhou F, Zhang X. The Improved Antiwear and Anticorrosion Properties of Epoxy Resin with Metal-Organic Framework ZIF-8 Containing Lubrication Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10649-10661. [PMID: 35989469 DOI: 10.1021/acs.langmuir.2c01623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) was fabricated as a lubrication container to encapsulate lubrication oil, which was added to epoxy resin (EP) as a filler to get the self-lubricating ZIF-8/EP composites coating. The antiwear and anticorrosion peculiarities of EP can be significantly improved by the encapsulation method. The antiwear peculiarities of EP were evaluated by the macroscopic ball-disk friction tests with the 9Cr18 steel ball as the counterface material. The result demonstrates that the coefficient of friction (COF) and wear rate of the self-lubricating ZIF-8/EP composites were reduced by 82.1% and 93.5% compared with that of the pure EP, respectively. Importantly, the ZIF-8/EP composite shows anticorrosion performance in the artificial seawater (ASW). The constant phase element and effective capacitance of the coating containing ZIF-8 fillers are lower than that of the non-containing coating. In addition, the diameter of the capacitive arc and the impedance modulus of the coating containing ZIF-8 + YR1800 are higher than those of the coating non-containing, which proved that the corrosion resistance of the EP is improved by the ZIF-8 + YR1800.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huiyun Tian
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, No. 300, Changjiang Road, Yantai, Shandong 264006, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, China
| | - Xudong Sui
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, No. 300, Changjiang Road, Yantai, Shandong 264006, China
| | - Xia Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, No. 300, Changjiang Road, Yantai, Shandong 264006, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, China
| |
Collapse
|
7
|
Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling. COATINGS 2022. [DOI: 10.3390/coatings12070988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Capsaicin has been extensively studied for its excellent antifouling activity and very low environmental toxicity. However, mixing natural capsaicin with coatings can cause rapid capsaicin leakage, severely shortening its antifouling cycle. In this study, we describe the preparation and performance of a new capsaicin-modified marine antifouling organofluorosilicone, which is based on silicone and fluorine acrylate monomers covalently bound to an organic antimicrobial monomer, HMBA (N-(4-hydroxy-3-methoxybenzyl)-acrylamide) on a polymer network. The chemical grafting of HMBA into the polymer has improved the problem of short antifouling life of the coating due to antifouling agent leakage and the environmental pollution caused by the leakage. The study focused on the synthesis of pristine acrylate monomers with organic bioactive groups prepared from vanillin amine salts and their co-polymerization in the presence of distal acrylate oligomers. The resulting cross-linked films were characterized using infrared spectroscopy, contact angle, and adhesion analyses. The results indicate that the materials had good adhesion, low surface energy, and were resistant to prolonged immersion in water. The polyacrylate coating synthesized from acrylate exhibited antibacterial and anti-algae activity. Biological tests on the marine microorganisms, Pseudomonas species, Shewanella species, and Navicula incerta, revealed a 97%, 98%, and 99% reduction compared to the blank control group, respectively, indicating that the coating has strong anti-adhesive ability. This work is expected to develop a promising material for marine antifouling.
Collapse
|