1
|
Corral-Casas C, Ayestarán Latorre C, Gattinoni C, Brewer M, Karl J, Dini D, Ewen JP. Molecular Insights into the Adsorption of Deposit Control Additives from Hydrocarbon Fuels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1900-1913. [PMID: 39817611 PMCID: PMC11780739 DOI: 10.1021/acs.langmuir.4c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits. We use molecular dynamics with the adaptive biasing force method to generate the potential of mean force as a function of the vertical distance between the surfactants and deposits in gasoline and diesel fuel surrogates. We find that a zwitterionic surfactant outperforms a conventional polyisobutylene succinimide for binding to these aromatic species. The amine groups in the succinimide headgroup only weakly adsorb on the polyaromatic deposit, while additional functional groups in the zwitterionic surfactant, particularly the quarternary ammonium ion, markedly enhance the binding strength. We decompose the adsorption free energies of the surfactants into their entropic and enthalpic components, to find that the latter dominates the attraction from these non-aqueous solvents. The adsorption free energy of both surfactants is slightly weaker from n-hexadecane (diesel) than iso-octane (gasoline), which is due to the larger steric barrier from stronger molecular layering of the former on the deposit. Density functional theory calculations of the adsorption of DCA fragments validate the force field used in the molecular dynamics simulations and provide further insights into the nature of the intermolecular interactions. The approach introduced here shows considerable promise for accelerating the discovery of novel DCAs to facilitate more advanced fuel formulations to reduce emissions.
Collapse
Affiliation(s)
- Carlos Corral-Casas
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2BX, United Kingdom
| | - Carlos Ayestarán Latorre
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2BX, United Kingdom
| | - Chiara Gattinoni
- Department
of Physics, King’s College London, Strand Campus, London WC2R 2LS, United Kingdom
| | - Mark Brewer
- Shell
Global Solutions International B.V., Grasweg 39, 1031
HW Amsterdam, The
Netherlands
| | - Jörn Karl
- Shell
Global Solutions (Deutschland) GmbH, Hohe-Schaar-Straße 36, 21107 Hamburg, Germany
| | - Daniele Dini
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2BX, United Kingdom
| | - James P. Ewen
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2BX, United Kingdom
| |
Collapse
|
2
|
Zhu Y, Wang B, Farooq U, Li Y, Qi Z, Zhang Q. Effects of surfactants on the adsorption of norfloxacin onto ferrihydrite: comparison between anionic and cationic surfactants. ENVIRONMENTAL TECHNOLOGY 2025; 46:221-231. [PMID: 38770654 DOI: 10.1080/09593330.2024.2354056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
There is little information on how widespread surfactants affect the adsorption of norfloxacin (NOR) onto iron oxide minerals. In order to elucidate the effects of various surfactants on the adsorption characteristics of NOR onto typical iron oxides, we have explored the different influences of sodium dodecylbenzene sulfonate (SDBS), an anionic surfactant, and didodecyldimethylammonium bromide (DDAB), a cationic surfactant, on the interactions between NOR and ferrihydrite under different solution chemistry conditions. Interestingly, SDBS facilitated NOR adsorption, whereas DDAB inhibited NOR adsorption. The adsorption-enhancement effect of SDBS was ascribed to the enhanced electrostatic attraction, the interactions between the adsorbed SDBS on ferrihydrite surfaces and NOR molecules, and the bridging effect of SDBS between NOR and iron oxide. In comparison, the adsorption-inhibition effect of DDAB owning to the adsorption site competitive adsorption between NOR and DDAB for the effective sites as well as the steric hindrance between NOR-DDAB complexes and the adsorbed DDAB on ferrihydrite surfaces. Additionally, the magnitude of the effects of surfactants on NOR adsorption declined with increasing pH values from 5.0 to 9.0, which was related to the amounts of surfactant binding to ferrihydrite surfaces. Moreover, when the background electrolyte was Ca2+, the enhanced effect of SDBS on NOR adsorption was caused by the formation of NOR-Ca2+-SDBS complexes. The inhibitory effect of DDAB was due to the DDAB coating on ferrihydrite, which undermined the cation-bridging effect. Together, the findings from this work emphasize the essential roles of widely existing surfactants in controlling the environmental fate of quinolone antibiotics.
Collapse
Affiliation(s)
- Yuwei Zhu
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, People's Republic of China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Qiang Zhang
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
3
|
Song W, Campen S, Shiel H, Gattinoni C, Zhang J, Wong JSS. Position of Carbonyl Group Affects Tribological Performance of Ester Friction Modifiers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14252-14262. [PMID: 38456401 PMCID: PMC10958443 DOI: 10.1021/acsami.3c16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The tribological properties of lubricants can be effectively improved by the introduction of amphiphilic molecules, whose performance is largely affected by their polar head groups. In this work, the tribological performance in steel-steel contacts of two isomers, glycerol monostearate (GMS) and stearyl glycerate (SG), a glyceride and a glycerate, were investigated as organic friction modifiers (OFM) in hexadecane. SG exhibits a much lower friction coefficient and wear than GMS despite their similar structures. The same applies when comparing the performance of oleyl glycerate (OG) and its isomer, glycerol monooleate (GMO). Surface chemical analysis shows that SG forms a polar, carbon-based, tribofilm of around tens of nanometers thick, while GMS does not. This tribofilm shows low friction and robustness under nanotribology test, which may contribute to its superior performance at the macro-scale. The reason for this tribofilm formation can be due to the stronger adsorption of SG on the steel surface than that of GMS. The tribofilm formation can be stress-activated since lower friction and higher tribofilm coverage can be obtained under high load. This work offers insights into the lubrication mechanism of a novel OFM and provides strategies for OFM design.
Collapse
Affiliation(s)
- Wei Song
- The
Tribology Group, Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Sophie Campen
- The
Tribology Group, Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Huw Shiel
- Department
of Material, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Chiara Gattinoni
- Department
of Physics, King’s College London, Strand, London WC2R 2LS, U.K.
| | - Jie Zhang
- The
Tribology Group, Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Janet S. S. Wong
- The
Tribology Group, Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Kanduč M, Stubenrauch C, Miller R, Schneck E. Interface Adsorption versus Bulk Micellization of Surfactants: Insights from Molecular Simulations. J Chem Theory Comput 2024; 20:1568-1578. [PMID: 37216476 PMCID: PMC10902850 DOI: 10.1021/acs.jctc.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surfactants play essential roles in many commonplace applications and industrial processes. Although significant progress has been made over the past decades with regard to model-based predictions of the behavior of surfactants, important challenges have remained. Notably, the characteristic time scales of surfactant exchange among micelles, interfaces, and the bulk solution typically exceed the time scales currently accessible with atomistic molecular dynamics (MD) simulations. Here, we circumvent this problem by introducing a framework that combines the general thermodynamic principles of self-assembly and interfacial adsorption with atomistic MD simulations. This approach provides a full thermodynamic description based on equal chemical potentials and connects the surfactant bulk concentration, the experimental control parameter, with the surfactant surface density, the suitable control parameter in MD simulations. Self-consistency is demonstrated for the nonionic surfactant C12EO6 (hexaethylene glycol monododecyl ether) at an alkane/water interface, for which the adsorption and pressure isotherms are computed. The agreement between the simulation results and experiments is semiquantitative. A detailed analysis reveals that the used atomistic model captures well the interactions between surfactants at the interface but less so their adsorption affinities to the interface and incorporation into micelles. Based on a comparison with other recent studies that pursued similar modeling challenges, we conclude that the current atomistic models systematically overestimate the surfactant affinities to aggregates, which calls for improved models in the future.
Collapse
Affiliation(s)
- Matej Kanduč
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Cosima Stubenrauch
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Reinhard Miller
- Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Armstrong AJ, Apóstolo RFG, McCoy TM, Allen FJ, Doutch J, Cattoz BN, Dowding PJ, Welbourn RJL, Routh AF, Camp PJ. Experimental and simulation study of self-assembly and adsorption of glycerol monooleate in n-dodecane with varying water content onto iron oxide. NANOSCALE 2024; 16:1952-1970. [PMID: 38175178 DOI: 10.1039/d3nr05080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The self-assembly and surface adsorption of glycerol monooleate (GMO) in n-dodecane are studied using a combination of experimental and molecular dynamics simulation techniques. The self-assembly of GMO to form reverse micelles, with and without added water, is studied using small-angle neutron scattering and simulations. A large-scale simulation is also used to investigate the self-assembly kinetics. GMO adsorption onto iron oxide is studied using depletion isotherms, neutron reflectometry, and simulations. The adsorbed amounts of GMO, and any added water, are determined experimentally, and the structures of the adsorbed films are investigated using reflectometry. Detailed fitting and analysis of the reflectometry measurements are presented, taking into account various factors such as surface roughness, and the presence of impurities. The reflectometry measurements are complemented by molecular dynamics simulations, and good consistency between both approaches is demonstrated by direct comparison of measured and simulated reflectivity and scattering length density profiles. The results of this analysis are that in dry systems, GMO adsorbs as self-assembled reverse micelles with some molecules adsorbing directly to the surface through the polar head groups, while in wet systems, the GMO is adsorbed onto a thin layer of water. Only at high surface coverage is some water trapped inside a reverse-micelle structure; at lower surface coverages, the GMO molecules associate primarily with the water layer, rather than self-assemble.
Collapse
Affiliation(s)
- Alexander J Armstrong
- ISIS Neutron and Muon Source, Didcot, UK
- Institute for Energy & Environmental Flows and Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Rui F G Apóstolo
- EPCC, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, Scotland, UK
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| | - Thomas M McCoy
- Institute for Energy & Environmental Flows and Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Alexander F Routh
- Institute for Energy & Environmental Flows and Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Philip J Camp
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| |
Collapse
|
6
|
Chen J, Zhang Q, Zhu Y, Zhang M, Zhu Y, Farooq U, Lu T, Qi Z, Chen W. Adsorption of fluoroquinolone antibiotics onto ferrihydrite under different anionic surfactants and solution pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28059-x. [PMID: 37269523 DOI: 10.1007/s11356-023-28059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
To date, little information is available regarding the impacts of the widespread anionic surfactants on the adsorption behaviors of antibiotics onto typical iron oxides. Herein, we have investigated the effects of two typical surfactants (sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)) on the adsorption of two widely used antibiotics (i.e., levofloxacin (LEV) and ciprofloxacin (CIP)) onto ferrihydrite. Results of kinetic experiments showed that the adsorption of antibiotics was well fitted by the pseudo-second-order kinetic models, indicating that the adsorption process might be controlled by chemisorption. The affinity of ferrihydrite toward CIP was greater than that toward LEV, which was ascribed to the higher hydrophobicity of CIP than LEV. Both surfactants enhanced antibiotic adsorption owing to SDS or SDBS molecules as bridge agents between ferrihydrite particles and antibiotics. Interestingly, the extent of the enhanced effects of surfactants on antibiotic adsorption declined as the background solution pH increased from 5.0 to 9.0, which was mainly due to the weaker hydrophobic interactions between antibiotics and the adsorbed surfactants on the iron oxide surfaces as well as the greater electrostatic repulsion between the anionic species of antibiotics and the negatively charged ferrihydrite particles at higher pH. Together, these findings emphasize the importance of widespread surfactants for illustrating the interactions between fluoroquinolone antibiotics and iron oxide minerals in the natural environment.
Collapse
Affiliation(s)
- Jiuyan Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, 350007, Fujian, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengli Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yutong Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
7
|
Chen X, Yang J, Yasuda K, Koga N, Zhang H. Adsorption Behavior of TEMPO-Based Organic Friction Modifiers during Sliding between Iron Oxide Surfaces: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3170-3179. [PMID: 35235329 DOI: 10.1021/acs.langmuir.1c03203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic friction modifiers (OFMs) added to lubricating oils to reduce friction and wear are crucial for reducing energy loss and CO2 emissions. In our previous studies, we have developed N-(2,2,6,6-tetramethyl-1-oxyl-4-piperidinyl)dodecaneamide, referred to as C12TEMPO, as a new type of OFM and experimentally demonstrated its superior performance to conventional OFMs of stearic acid and glycerol monooleate. However, the behavior of C12TEMPO adsorbing onto solid surfaces from base oil during sliding, which largely dictates the lubrication performance, is yet to be elucidated. Here, we performed molecular dynamics simulations for confined shear of a C12TEMPO solution in poly-α-olefin between hematite surfaces. Unlike conventional OFMs, which typically have one functional group or multiple functional groups of the same type, C12TEMPO features two functional groups of different types: one amide and one terminal free oxygen radical. The results showed that adsorbed boundary films with a double-layer structure form stably during sliding, owing to double- or single-site surface adsorption and interlayer hydrogen bonding via the two functional groups. Additionally, some molecules in each of the first and second layers also form intralayer hydrogen bonding. Such multitype adsorption is unique and favorable for enhancing the strength of boundary films to withstand heavily loaded and prolonged sliding. The velocity distribution indicates that the first and second layers are solid- and liquid-like, respectively. The second layer could act as a buffer for the first layer, which is the last barrier to prevent solid-solid contact, against shear. We also found that the second layer can act as a reservoir to rapidly repair the once depleted region in the first layer because of the interlayer hydrogen bonding. The combination of the high strength and self-repair ability of the C12TEMPO boundary films can rationally explain the experimentally observed properties of high load-carrying capacity, excellent antiwear effect, and high stability of friction over time.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Juntao Yang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Koji Yasuda
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nobuaki Koga
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hedong Zhang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Lashkari S, Chekini M, Pal R, Pope MA. Aqueous, Mixed Micelles as a Means of Delivering the Hydrophobic Ionic Liquid EMIM TFSI to Graphene Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:531-540. [PMID: 34978199 DOI: 10.1021/acs.langmuir.1c02928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most ionic liquids (ILs) are not surface-active and cannot, alone, be directed to assemble at surfaces─despite their potential as nonvolatile structure-directing agents and use as advanced materials in a multitude of applications. In this work, we investigate aqueous systems of common nonionic surfactants (Triton X-100 and Tween 20), which we use to solubilize 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resulting solution of mixed micelle leads to spontaneous adsorption of the IL/surfactant complex onto graphene oxide (GO) surfaces, forming a compact film. Adsorption isotherms generated by fluorescence labeling of the IL and surfactant phases are used to quantify the extent of adsorption. While sensitive to the GO dispersion concentration, upwards of 3 g IL/g GO adsorb under dilute conditions. Atomic force microscopy is used to show that the adsorbed layer uniformly distributes as an ∼1 nm thick coating (per GO side) as the system reaches the first plateau of a Langmuir-type isotherm. Adsorption beyond this plateau is possible but leads to thicker (>30 nm), inhomogeneous adsorbed layers. Both micellar size in solution and adsorbed layer thickness reduce upon the addition of IL to the surfactant phase, suggesting significant interactions among the materials and nonideal mixing of the components.
Collapse
Affiliation(s)
- Sima Lashkari
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mahshid Chekini
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rajinder Pal
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Michael A Pope
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Superfast Synthesis of Stabilized Silver Nanoparticles Using Aqueous Allium sativum (Garlic) Extract and Isoniazid Hydrazide Conjugates: Molecular Docking and In-Vitro Characterizations. Molecules 2021; 27:molecules27010110. [PMID: 35011342 PMCID: PMC8746848 DOI: 10.3390/molecules27010110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) was synthesized from fresh garlic extract coupled with isoniazid hydrazide (INH), a commonly used antibiotic to treat tuberculosis. A molecular docking study conducted with the selected compounds compared with anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis. The aqueous extract of garlic was prepared and mixed with silver nitrate (AgNO3) solution for the superfast synthesis of stable AgNPs. INH was then conjugated with AgNPs at different ratios (v/v) to obtain stable INH-AgNPs conjugates (AgNCs). The resulting AgNCs characterized by FTIR spectra revealed the ultrafast formation of AgNPs (<5 s) and perfectly conjugated with INH. The shifting of λmax to longer wavelength, as found from UV spectral analysis, confirmed the formation of AgNCs, among which ideal formulations (F7, F10, and F13) have been pre-selected. The zeta particle size (PS) and the zeta potential (ZP) of AgNPs were found to be 145.3 ± 2.1 nm and −33.1 mV, respectively. These data were significantly different compared to that of AgNCs (160 ± 2.7 nm and −14.4 mV for F7; 208.9 ± 2.9 nm and −19.8 mV for F10; and 281.3 ± 3.6 nm and −19.5 mV for F13), most probably due to INH conjugation. The results of XRD, SEM and EDX confirmed the formation of AgNCs. From UV spectral analysis, EE of INH as 51.6 ± 5.21, 53.6 ± 6.88, and 70.01 ± 7.11 %, for F7, F10, and F13, respectively. The stability of the three formulations was confirmed in various physiological conditions. Drug was released in a sustainable fashion. Besides, from the preferred 23 compounds, five compounds namely Sativoside R2, Degalactotigonin, Proto-desgalactotigonin, Eruboside B and Sativoside R1 showed a better docking score than trpD, and therefore may help in promoting anti-tubercular activity.
Collapse
|