1
|
Zhang X, Yang L, Cui T, Li X, Wei H. Preparation of Stainless Steel Superhydrophobic Surface and Analysis of Hydrophobic Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20715-20724. [PMID: 39297530 DOI: 10.1021/acs.langmuir.4c02801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
By analyzing the application conditions of hydrothermal oxidation equipment, we found that the corrosion resistance of stainless steel is crucial. It is necessary to prepare superhydrophobic surface to improve the corrosion resistance and find a cost-effective and environmentally friendly preparation method. Therefore, this paper proposes a method combining nanosecond laser and post-treatment, which uses nanosecond laser to etch microstructure and reduces the surface energy through diverse post-treatment methods to achieve hydrophobicity. The surface morphology characteristics were studied, the wettability of various post-treatment methods was compared, and the hydrophobic mechanism was analyzed. The results show that the groove width has a significant impact on the surface morphology. Superhydrophobic surface can be obtained immediately after heat treatment and fluorosilane modification, while natural storage requires more than one month. All of the post-treatment can obtain hydrophobicity by reducing the surface energy, but the chemical composition is distinct. The cost-effective composite process of laser and heat treatment plays a guiding role in future research on the preparation of stainless steel superhydrophobic surface and has broad prospects in the future in large-scale production and application.
Collapse
Affiliation(s)
- Xinyan Zhang
- Dalian Jiaotong University, Dalian 116028, P. R. China
| | - Liang Yang
- Dalian Jiaotong University, Dalian 116028, P. R. China
| | - Tong Cui
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Shenyang University of Chemical Technology, Shenyang 110141, P. R. China
| | - Xianru Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
2
|
Yang D, Zheng Y, Li J, Clare AT, Choi KS, Hou X. Anisotropic Icephobic Mechanisms of Textured Surface: Barrier or Accelerator? ACS APPLIED MATERIALS & INTERFACES 2024; 16:35852-35863. [PMID: 38934333 DOI: 10.1021/acsami.4c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Icing has been seen as an economic and safety hazard due to its threats to aviation, power generation, offshore platforms, etc., where passive icephobic surfaces with a surface texturing design have the potential to address this problem. However, the intrinsic icephobic principles associated with the surface textures, energy, elasticity, and hybrid effects are still unclear. To explore the anisotropic wettability, ice nucleation, and ice detaching behaviors, a series of textured poly(dimethylsiloxane) (PDMS)-based coatings with various texture orientations were proposed through a simple stamping method with surface functionalization. The anisotropic hydrophobic/icephobic phenomena and mechanisms were discovered from wettability evaluation, experimentally studied by icing/deicing experiments, and finally verified by microscopic numerical simulations. One-way analysis of variance (one-way ANOVA analysis) was used to analyze the effect of surface textures on hydrophobic/icephobic properties, which assisted in understanding anisotropic phenomena. Typical anisotropic ice nucleation and growth on the textured coatings were clarified using in situ environmental scanning electron microscope (ESEM) characterization. The ice/coating interfacial stress responses were studied by numerical stimulation at the microscopic level, further verifying the localized, amplified, and propagated stress at the ice/coating interface. The theoretical anisotropic responses, barrier effect, and accelerating effect were verified to interpret the anisotropic wettability and icephobicity, depending on the specific surface conditions. This study revealed the basics of the anisotropic icephobic mechanisms of textured icephobic surfaces, further facilitating the R&D of passive icephobic surfaces.
Collapse
Affiliation(s)
- Deyu Yang
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
- Sichuan Province All-Electric Navigation Aircraft Key Technology Engineering Research Centre, Guanghan 618307, China
| | - Yanchang Zheng
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jingtong Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Adam T Clare
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Kwing-So Choi
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Xianghui Hou
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
- Henan Key Laboratory of High Performance Carbon Fiber Reinforced Composites, Institute of Carbon Matrix Composites, Henan Academy of Sciences, Zhengzhou 450046, China
| |
Collapse
|
3
|
Zhu X, Qiang Y, Wang X, Fan M, Lv Z, Zhou Y, He B. Reversible immobilization of cellulase on gelatin for efficient insoluble cellulose hydrolysis. Int J Biol Macromol 2024; 273:132928. [PMID: 38897510 DOI: 10.1016/j.ijbiomac.2024.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Immobilized enzymes are one of the most common tools used in enzyme engineering, as they can substantially reduce the cost of enzyme isolation and use. However, efficient catalysis of solid substrates using immobilized enzymes is challenging, hydrolysis of insoluble cellulose by immobilized cellulases is a typical example of this problem. In this study, inspired by bees and honeycombs, we prepared gelatin-modified cellulase (BEE) and gelatin hydrogels (HONEYCOMB) to achieve reversible recycling versus release of cellulase through temperature-responsive changes in the triple-stranded helix-like interactions between BEE and HONEYCOMB. At elevated temperatures, BEE was released from HONEYCOMB and participated in hydrolytic saccharification. After 24 h, the glucose yields of both the free enzyme and BEE reached the same level. When the temperature was decreased, BEE recombined with HONEYCOMB to facilitate the effective separation and recycling of BEE from the system. The enzymatic system retained >70 % activity after four reuse cycles. In addition, this system showed good biocompatibility and environmental safety. This method increases the mass transfer capacity and enables easy recovery of immobilized cellulase, thereby serving as a valuable strategy for the immobilization of other enzymes.
Collapse
Affiliation(s)
- Xing Zhu
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuanyuan Qiang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Mingliang Fan
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zuoyuan Lv
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yi Zhou
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bin He
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
4
|
Koochaki MS, Momen G, Lavoie S, Jafari R. Enhancing Icephobic Coatings: Exploring the Potential of Dopamine-Modified Epoxy Resin Inspired by Mussel Catechol Groups. Biomimetics (Basel) 2024; 9:349. [PMID: 38921229 PMCID: PMC11201944 DOI: 10.3390/biomimetics9060349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
A nature-inspired approach was employed through the development of dopamine-modified epoxy coating for anti-icing applications. The strong affinity of dopamine's catechol groups for hydrogen bonding with water molecules at the ice/coating interface was utilized to induce an aqueous quasi-liquid layer (QLL) on the surface of the icephobic coatings, thereby reducing their ice adhesion strength. Epoxy resin modification was studied by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance spectroscopy (NMR). The surface and mechanical properties of the prepared coatings were studied by different characterization techniques. Low-temperature ATR-FTIR was employed to study the presence of QLL on the coating's surface. Moreover, the freezing delay time and temperature of water droplets on the coatings were evaluated along with push-off and centrifuge ice adhesion strength to evaluate their icephobic properties. The surface of dopamine-modified epoxy coating presented enhanced hydrophilicity and QLL formation, addressed as the main reason for its remarkable icephobicity. The results demonstrated the potential of dopamine-modified epoxy resin as an effective binder for icephobic coatings, offering notable ice nucleation delay time (1316 s) and temperature (-19.7 °C), reduced ice adhesion strength (less than 40 kPa), and an ice adhesion reduction factor of 7.2 compared to the unmodified coating.
Collapse
Affiliation(s)
- Mohammad Sadegh Koochaki
- Département des Sciences Appliquées, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (M.S.K.); (R.J.)
| | - Gelareh Momen
- Département des Sciences Appliquées, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (M.S.K.); (R.J.)
| | - Serge Lavoie
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada;
| | - Reza Jafari
- Département des Sciences Appliquées, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (M.S.K.); (R.J.)
| |
Collapse
|
5
|
Luo G, Gao Z, Zhou C, Huang Y, Hu S, Hu Y, Zong C, Lei L, Li H. Well-Tailored Norbornene-Based Fluorinated Copolymers toward Modulating Icephobicity and Mechanical Robustness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11785-11794. [PMID: 38781461 DOI: 10.1021/acs.langmuir.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Well-tailored construction of icephobic surfaces with mechanical robustness and investigation of the structure-property relationships at the molecular level are highly desirable. Herein, a series of norbornene-based fluorinated polyolefin copolymers (FPOR-x) with varying norbornenyl dodecafluoroheptyl ester (NDFHE) molar fractions (0-100 mol %) were well-designed and fabricated via living ring-opening metathesis polymerization (ROMP) employing NDFHE and norbornenyl pentafluorophenyl ester (NPFPE) as the soft and hard segments, respectively. The mechanical and icephobic properties of the fluorinated copolymers can be regulated by adjusting the soft NDFHE contents. As a result, the well-designed norbornene-based copolymers exhibited a wide range of tunable mechanical properties, including tensile strength ranging from 0.2 to 26.4 MPa, elastic modulus ranging from 0.6 to 593.7 MPa, and breaking elongations ranging from 5718.7% to 3.7%, correlating with the proportion of soft NDFHE content. Furthermore, the synergistic interplay between soft and hard segments, particularly the hardness in the majority and softness in the minority or vice versa, could achieve a significant difference in the local modulus and enhance the propagations of cracks within the three-phase regions (soft regions/hard regions/ice), ultimately leading to a significant reduction in ice shear strength. Notably, FPOR-25% with a tensile strength of 12.0 MPa and an elastic modulus of 227.5 MPa exhibited a remarkably low ice shear strength of 57.7 kPa. This study not only highlights the relationship between the polymer molecular structure and surface icephobic properties but also breaks the limitations of icephobic surfaces with a low modulus.
Collapse
Affiliation(s)
- Guangzeng Luo
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Zhilu Gao
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Cuiping Zhou
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Yintan Huang
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Shuangshuang Hu
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Yifan Hu
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Chuanyong Zong
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Lan Lei
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| |
Collapse
|
6
|
Zhou W, Feng X, Wang Z, Zhu D, Chu J, Zhu X, Hu Y, Tian G. Superhydrophobic Surfaces with Excellent Ice Prevention and Drag Reduction Properties Inspired by Iridaceae Leaf. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7192-7204. [PMID: 38503714 DOI: 10.1021/acs.langmuir.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The anti-icing and drag-reduction properties of diverse microstructured surfaces have undergone extensive study over the past decade. Nonetheless, tough environments enforce stringent demands on the composite characteristics of superhydrophobic surfaces (SHS). In this study, fresh composite structures were fabricated on a metal substrate by nanosecond laser machining technology, drawing inspiration from the hardy plant Iridaceae. The prepared sample surface mainly consists of a periodic microrhombus array and irregular nanosheets. To comprehensively investigate the effect of its special structure on surface properties, three surfaces with different sizes of rhombic structures were used for comparative analysis, and the results show that the SH-S2 sample is optimal. This can significantly delay the freezing time by an impressive 1404 s at -10 °C while revealing the sample surface anti-icing strategy. In addition, the rheological experiments determined over 300 μm of slip length for the SH-S2 sample, and the drag reduction rate of the surface reaches nearly 40%, which is well aligned with the results of the delayed icing experiments. Finally, the mechanical durability of the SH-S2 surface was investigated through scratch damage, sandpaper abrasion, reparability trials, and icing and melting cycle tests. This research presents a new approach and methodology for the application of SHS on polar ship surfaces.
Collapse
Affiliation(s)
- Wen Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhizhong Wang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dongpo Zhu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaohui Zhu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuxue Hu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
7
|
Jha A, Gryska S, Barrios C, Frechette J. Adhesion and Contact Aging of Acrylic Pressure-Sensitive Adhesives to Swollen Elastomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4267-4276. [PMID: 38359377 PMCID: PMC10906000 DOI: 10.1021/acs.langmuir.3c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Fluid-infused (or swollen) elastomers are known for their antiadhesive properties. The presence of excess fluid at their surface is the main contributor to limiting contact formation and minimizing adhesion. Despite their potential, the mechanisms for adhesion and contact aging to fluid-infused elastomers are poorly understood beyond contact with a few materials (ice, biofilms, glass). This study reports on adhesion to a model fluid-infused elastomer, poly(dimethylsiloxane) (PDMS), swollen with silicone oil. The effects of oil saturation, contact time, and the opposing surface are investigated. Specifically, adhesion to two different adherents with comparable surface energies but drastically different mechanical properties is investigated: a glass surface and a soft viscoelastic acrylic pressure-sensitive adhesive film (PSA, modulus ∼25 kPa). Adhesion between the PSA and swollen PDMS [with 23% (w/w) silicone oil] retains up to 60% of its value compared to contact with unswollen (dry) PDMS. In contrast, adhesion to glass nearly vanishes in contact with the same swollen elastomer. Adhesion to the PSA also displays stronger contact aging than adhesion to glass. Contact aging with the PSA is comparable for dry and unsaturated PDMS. Moreover, load relaxation when the PSA is in contact with the PDMS does not correlate with contact aging for contact with the dry or unsaturated elastomer, suggesting that contact aging is likely caused by chain interpenetration and polymer reorganization within the contact region. Closer to full saturation of the PDMS with oil, adhesion to the PSA decreases significantly and shows a delay in the onset of contact aging that is weakly correlated to the poroelastic relaxation of the elastomer. Additional confocal imaging suggests that the presence of a layer of fluid trapped at the interface between the two solids could explain the delayed (and limited) contact aging to the oil-saturated PDMS.
Collapse
Affiliation(s)
- Anushka Jha
- Chemical
and Biomolecular Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Stefan Gryska
- 3M
Center, 3M Company, Building 201-4N-01, St. Paul, Minnesota 55144-1000, United States
| | - Carlos Barrios
- Carlos
Barrios Consulting LLC, Frisco, Texas 75034, United States
| | - Joelle Frechette
- Chemical
and Biomolecular Engineering, University
of California, Berkeley, California 94720, United States
- Energy
Technology Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Sun J, Gao F, Hu J, Qi Z, Huang Y, Guo Y, Chen Y, Wei J, Zhang H, Pang Q, Wang H, Zhang X. Superhydrophilic and oleophobic sponges prepared based on Mussel-Inspired chemistry for efficient oil-water separation. Chem Asian J 2024:e202300962. [PMID: 38214502 DOI: 10.1002/asia.202300962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Superhydrophilic/oleophobic materials are considered to be the best materials for achieving oil-water separation, but their preparation is difficult and the existing methods are not universal. In this paper, a two-step modification strategy was used to prepare superhydrophilic/oleophobic sponges by adjusting the polar and nonpolar components of the materials using mussel-inspired chemistry. While remaining superhydrophilic, the modified sponge surface has a maximum contact angle of 135° with different oils in air. The modified sponge exhibited superoleophobicity in water, and the contact angle of oil could reach more than 150°. In addition, the modified sponges were also reusable, chemically stable, and mechanically durable. Its oil-water separation flux was up to 24900 Lm-2 h-1 bar-1 , and the separation efficiency was above 97 %. We believe that this method will provide an environmentally friendly and efficient way to prepare the superhydrophilic/oleophobic materials.
Collapse
Affiliation(s)
- Jianteng Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Feng Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jingwen Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Zhixian Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yue Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Yonggui Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Ying Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Huan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Qianchan Pang
- Research Center of Modern Analysis Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Xiaoqing Zhang
- Research Center of Modern Analysis Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
9
|
Wang L, Jiang G, Zhu D, Tian Z, Chen C, Hu X, Peng R, Li D, Zhang H, Zhao H, Fan P, Zhong M. Self-Driven Droplet Motions Below their Icing Points. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302339. [PMID: 37312674 DOI: 10.1002/smll.202302339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Liquid fluidity is a most key prerequisite for a broad range of technologies, from energy, fluid machineries, microfluidic devices, water, and oil transportation to bio-deliveries. While from thermodynamics, the liquid fluidity gradually diminishes as temperature decreases until completely solidified below icing points. Here, self-driven droplet motions are discovered and demonstrated occurring in icing environments and accelerating with both moving distances and droplet volumes. The self-driven motions, including self-depinning and continuous wriggling, require no surface pre-preparation or energy input but are triggered by the overpressure spontaneously established during icing and then continuously accelerated by capillary pulling of frosts. Such self-driven motions are generic to a broad class of liquid types, volumes, and numbers on various micro-nanostructured surfaces and can be facilely manipulated by introducing pressure gradients spontaneously or externally. The discovery and control of self-driven motions below icing points can greatly broaden liquid-related applications in icing environments.
Collapse
Affiliation(s)
- Lizhong Wang
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guochen Jiang
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongyu Zhu
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning, 110034, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Changhao Chen
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyu Hu
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Daizhou Li
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjun Zhang
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huanyu Zhao
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning, 110034, P. R. China
| | - Peixun Fan
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Li R, Zhu P, Xu Y, Lu H, Rong J. Molecular Dynamics Simulation of Droplet Impact on a Hydrophobic 3D Elastic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37450274 DOI: 10.1021/acs.langmuir.3c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The phenomenon of droplets impacting elastic surfaces is common in nature and in many engineering applications. It has been shown that droplet impact on an elastic surface drastically reduces droplet contact time and hinders droplet spreading. However, most of the current studies are based on experiments, and the analysis of the influence mechanism of the elastic substrate on the dynamic behavior of droplets is not complete. In addition, the simulations of droplet impact on elastic substrates are mainly focused on 2D elastic films or vibrating rigid substrates, ignoring the effect of 3D elastic substrate deformation on the droplet dynamic behavior. Therefore, in this paper, we propose to model the droplet impact on a 3D hydrophobic elastic substrate using the molecular dynamics method. We find that droplet pancake rebound can substantially reduce the droplet contact time. Moreover, we record the conditions required for the pancake rebound of the droplet. Furthermore, we investigated the effects of the elastic modulus of the substrate and the initial velocity of the droplet on the droplet contact time, contact area, and spreading factor. This study further elucidates the influence mechanism of the elastic substrate on the dynamic behavior of the droplet and provides theoretical guidance for regulating the dynamic behavior of the droplet in related fields.
Collapse
Affiliation(s)
- Rao Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Pengzhe Zhu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Yimeng Xu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Hongsheng Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Jiacheng Rong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| |
Collapse
|
11
|
Chen C, Fan P, Zhu D, Tian Z, Zhao H, Wang L, Peng R, Zhong M. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6025-6034. [PMID: 36688663 DOI: 10.1021/acsami.2c15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reducing unfavorable ice accretion on surfaces exposed in cold environment requires effective passive anti-icing/deicing techniques. Icephobic surfaces are widely applied on various infrastructures due to their low ice adhesion strength and flexibility, whereas their poor mechanical durability, common liquid infusion, weak resistance to contamination, and low bonding strength to substrates are the major remaining challenges. According to the fracture mechanics of ice layer, initiating cracks at the ice-solid interfaces via the proper design of internal structures of icephobic materials is a promising way to icephobicity. Herein, a crack initiating icephobic surface with porous PDMS sponges sandwiched between a protective, dense PDMS layer and a textured metal microstructure was proposed and fabricated. The combination of high- and low- stiffness PDMS layers anchored by the structured metal surface give the sandwich-like structure excellent icephobicity with both high durability and low ice adhesion (5.3 kPa in the icing-deicing cycles). The porosity and the elastic modulus of the PDMS sponges and the periodicity of the metal surface structures can both be tailored to realize enhanced icephobicity. The sandwich-like icephobic surface remained insignificantly changed under solid particle impacting and the durability characterized via linear abrasion tests was elevated compared with PDMS coating on flat metal surfaces. Additionally, the trilayer icephobic surface possesses durability, low ice adhesion strength, and improved resistance to contamination and is applicable on various surfaces.
Collapse
Affiliation(s)
- Changhao Chen
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Peixun Fan
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Dongyu Zhu
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning110034, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Huanyu Zhao
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning110034, P. R. China
| | - Lizhong Wang
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
12
|
He Q, Guo Z, Ma S, He Z. Recent Advances in Superhydrophobic Papers for Oil/Water Separation: A Mini-Review. ACS OMEGA 2022; 7:43330-43336. [PMID: 36506134 PMCID: PMC9730453 DOI: 10.1021/acsomega.2c05886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The separation of oceanic spilled oils and industrial oily wastewaters becomes a great challenge, and it is highly desirable to develop efficient materials for oil/water separation. As abundant sustainable resources, superhydrophobic papers (SPs) have drawn much attention because of low-cost and efficient oil/water separation. Herein, this mini-review summarizes recent advances of SPs in terms of design, preparation, and properties. On the basis of the many excellent properties of SPs (i.e., self-cleaning, durability, chemical corrosion resistance, and reusability), the oil/water separation performances (i.e., separation efficiency, permeation flux, and recyclability) of SPs as well as the corresponding mechanisms are discussed. The efficient oil/water separation property and recyclability of SPs make them promising candidates in the field of oily wastewater treatment.
Collapse
Affiliation(s)
- Qingzhen He
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Zhibiao Guo
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shiyu Ma
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Zhiwei He
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
13
|
Sun Y, Wang Y, Liang W, He L, Wang F, Zhu D, Zhao H. In Situ Activation of Superhydrophobic Surfaces with Triple Icephobicity at Low Temperatures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49352-49361. [PMID: 36260496 DOI: 10.1021/acsami.2c15075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Superhydrophobic surfaces have been widely studied due to their potential applications in aerospace fields. However, superhydrophobic surfaces with excellent water-repellent, anti-icing, and icephobic performances at low temperatures have rarely been reported. Herein, superhydrophobic surfaces with heating capability were prepared by etching square micropillar arrays on the surface of multiwalled carbon nanotube (MWCNT)/poly(dimethylsiloxane) (PDMS) films. The fabricated superhydrophobic surface has triple icephobicity, which can be activated even at low temperatures. The triple icephobicity is triggered by an applied voltage to achieve excellent water-repellent and icephobic capabilities, even at -40 °C. Additionally, theoretical calculations reveal that a droplet on a superhydrophobic surface loses heat at a rate of 8.91 × 10-5 J/s, which is 2 orders of magnitude slower than a flat surface (2.15 × 10-3 J/s). Also, at -40 °C, the mechanical interlocking force formed between the superhydrophobic surface and ice can be released by the heating property of the superhydrophobic surface. This low-energy, multifunctional superhydrophobic surface opens up new possibilities for bionic smart multifunctional materials in icephobic applications.
Collapse
Affiliation(s)
- Yongyang Sun
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Yubo Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, China
| | - Liang He
- Research Laboratory of Manufacturing Technology of Composite Materials, AVIC Xi'an Aircraft Industry Group Company LTD., Xi'an710089, China
| | - Fangxin Wang
- College of Civil Science and Engineering, Yangzhou University, Yangzhou225127, China
| | - Dongyu Zhu
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang110034, China
| | - Huanyu Zhao
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang110034, China
| |
Collapse
|
14
|
Zhi J, Wang S, Zhang J, Duan X, Wang J. Unveiling the Relationship of Surface Roughness on Superliquid-Repelling Properties with Randomly Distributed Rough Surface Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12841-12848. [PMID: 36215102 DOI: 10.1021/acs.langmuir.2c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Though superliquid-repelling surfaces are universally important in the fields of fundamental research and industrial production, the understanding and development of these surfaces to impacting liquid droplets remain elusive, especially the changes of wettability states. Surface roughness is required to obtain superliquid-repelling surfaces. However, the effect of surface roughness on the transition of these surfaces' wettability states is uncertain. Herein, we unveiled the relationship of surface roughness on regulating the wettability states of superliquid-repelling surfaces with randomly distributed rough structures through experiment and calculations. The roughness was controlled via regulating the size of surface rough structures, which were formed by a facile coating method. The results indicated that the surface rough structures could impact the value of the polar component (γsp) and then impact the wettability states of superliquid-repelling surfaces. Quantitatively, when the increment of surface roughness was low, the decrement of γsp was low and the wettability state of the superliquid-repelling surface was superhydrophobicity. When the increment of surface roughness was high, the decrement of γsp was high and the wettability state of the superliquid-repelling surface converted to superamphiphobicity. The findings will shed light onto the development of superliquid-repelling surfaces in future studies.
Collapse
Affiliation(s)
- Jinghui Zhi
- School of Energy and Power Engineering, National Research Center of Pumps, Jiangsu University, Zhenjiang212013, P.R. China
- Hefei Huasheng Pumps & Valves Co., Ltd., Hefei230000, P.R. China
| | - Shuaijun Wang
- School of Energy and Power Engineering, National Research Center of Pumps, Jiangsu University, Zhenjiang212013, P.R. China
| | - Junhui Zhang
- Hefei Huasheng Pumps & Valves Co., Ltd., Hefei230000, P.R. China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA5005, Australia
| | - Junfeng Wang
- School of Energy and Power Engineering, National Research Center of Pumps, Jiangsu University, Zhenjiang212013, P.R. China
| |
Collapse
|
15
|
He Z, Wu H, Shi Z, Duan X, Ma S, Chen J, Kong Z, Chen A, Sun Y, Liu X. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Lee SJ, Park GD. Effective Icephobicity of Silicone Oil-Infused Oleamide-Polydimethylsiloxane with Enhanced Lubrication Lifetime. ACS OMEGA 2022; 7:21156-21162. [PMID: 35755368 PMCID: PMC9218975 DOI: 10.1021/acsomega.2c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Icing and freezing phenomena in cold weather cause serious damage and economic losses. Thus, the development of a new effective icephobic surface with low ice adhesion strength (τice) that can easily remove ice by wind or gravity force is essentially required. In this study, we propose a silicone oil-infused oleamide-polydimethylsiloxane (SiOP) by a facile fabrication method to achieve the effective icephobic performance with enhanced lubrication lifetime. The proposed SiOP is composed of a composite containing oleamide and polydimethylsiloxane (PDMS) and silicone oil impregnated into the polymeric networks of the composite. Oleamide has been used as a slip agent in industries to reduce the skin friction of polymer films. The weight of the oil impregnated in SiOP is approximately three times higher than that of silicone oil-infused PDMS (SiPDMS). Different from the SiPDMS surface on which oil dries easily, a slippery oil layer is stably formed on the SiOP surface. The fabricated SiOP surfaces have very low τice values of approximately 1 kPa, which is much smaller than that of the SiPDMS surface. The SiOP with an oleamide content of 5 wt % exhibits the smallest τice value of 0.88 kPa. The fabricated SiOP surfaces maintain their superior icephobicity for more than 30 icing/deicing cycles, demonstrating their enhanced lubrication lifetime. In addition, the ice freezing time of a water droplet of 7 μL in volume is significantly delayed on the SiOP surface compared with that on the SiPDMS surface. The present results demonstrate that the proposed SiOP surface can help provide superior icephobic performance with the aid of the incorporation of oleamide into the conventional SiPDMS. The developed icephobic SiOP can be utilized to satisfactorily resolve the lubricant drought problem of conventional icephobic surfaces by empolying oleamide as a complementary slip agent.
Collapse
|
17
|
He Z, Wu H, Shi Z, Gao X, Sun Y, Liu X. Mussel-Inspired Durable TiO 2/PDA-Based Superhydrophobic Paper with Excellent Self-Cleaning, High Chemical Stability, and Efficient Oil/Water Separation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6086-6098. [PMID: 35504860 DOI: 10.1021/acs.langmuir.2c00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oceanic oil spill and the discharge of industrial oily wastewaters can cause significant threats to the ecological environment and human health. Herein, we design a durable TiO2/PDA-based superhydrophobic paper for efficient oil/water separation. Bioinspired from mussel adhesive proteins, the mechanical durability of the as-prepared superhydrophobic paper is enhanced by the deposition of polydopamine (PDA) onto cellulosic fibers via self-polymerization of dopamine. The TiO2/PDA-based superhydrophobic paper shows a high water contact angle of 168.2° and an oil contact angle of ∼0°, exhibiting excellent superhydrophobicity and superoleophilicity. Furthermore, the as-prepared superhydrophobic paper possesses excellent chemical stability, thermal stability, and mechanical durability in terms of being immersed in corrosive solutions and solvents and boiling water and being subjected to the sandpaper abrasion test, respectively. More importantly, the separation efficiency of the TiO2/PDA-based superhydrophobic paper for an oil/water mixture is 97.2%, and it maintains a separation efficiency above 94.3% even after 15 cyclic separation processes. Furthermore, the separation efficiency for water-in-oil emulsions is higher than 93.7% after 15 cyclic separation tests, showing its excellent recyclable stability for water-in-oil emulsions. Therefore, the rationally designed TiO2/PDA-based superhydrophobic paper shows great potential in the practical applications of self-cleaning, antifouling, and oil/water separation.
Collapse
Affiliation(s)
- Zhiwei He
- Center for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hanqing Wu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhen Shi
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Xianming Gao
- Center for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuping Sun
- Center for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xianguo Liu
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| |
Collapse
|
18
|
He Z, Wu H, Shi Z, Kong Z, Ma S, Sun Y, Liu X. Facile Preparation of Robust Superhydrophobic/Superoleophilic TiO 2-Decorated Polyvinyl Alcohol Sponge for Efficient Oil/Water Separation. ACS OMEGA 2022; 7:7084-7095. [PMID: 35252699 PMCID: PMC8892669 DOI: 10.1021/acsomega.1c06775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Oily wastewater and oil spills pose a threat to the environment and human health, and porous sponge materials are highly desired for oil/water separation. Herein, we design a new superhydrophobic/superoleophilic TiO2-decorated polyvinyl alcohol (PVA) sponge material for efficient oil/water separation. The TiO2-PVA sponge is obtained by firmly anchoring TiO2 nanoparticles onto the skeleton surface of pristine PVA sponge via the cross-linking reactions between TiO2 nanoparticles and H3BO3 and KH550, followed by the chemical modification of 1H,1H,2H,2H-perfluorodecyltrichlorosilane. The as-prepared TiO2-PVA sponge shows a high water contact angle of 157° (a sliding angle of 5.5°) and an oil contact angle of ∼0°, showing excellent superhydrophobicity and superoleophilicity. The TiO2-PVA sponge exhibits excellent chemical stability, thermal stability, and mechanical durability in terms of immersing it in the corrosive solutions and solvents, boiling it in water, and the sandpaper abrasion test. Moreover, the as-prepared TiO2-PVA sponge possesses excellent absorption capacity of oils or organic solvents ranging from 4.3 to 13.6 times its own weight. More importantly, the as-prepared TiO2-PVA sponge can separate carbon tetrachloride from the oil-water mixture with a separation efficiency of 97.8% with the aid of gravity and maintains a separation efficiency of 96.5% even after 15 cyclic oil/water separation processes. Therefore, the rationally designed superhydrophobic/superoleophilic TiO2-PVA sponge shows great potential in practical applications of dealing with oily wastewater and oil spills.
Collapse
Affiliation(s)
- Zhiwei He
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hanqing Wu
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Zhen Shi
- Institute
of Advanced Magnetic Materials, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Zhe Kong
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shiyu Ma
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuping Sun
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xianguo Liu
- Institute
of Advanced Magnetic Materials, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| |
Collapse
|