1
|
Song L, Jia H, Zhang F, Jia H, Wang Y, Xie Q, Fan F, Wang Q, Wen S. Sustainable Utilization of Surfactant-Free Microemulsion Regulated by CO 2 for Treating Oily Wastes: A Interpretation of the Response Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:960-967. [PMID: 38150588 DOI: 10.1021/acs.langmuir.3c03162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Surfactant-free microemulsions (SFMEs) have been explored extensively to avoid the residual surfactant problem caused by traditional surfactant microemulsions. Many researchers focused on the SFMEs with tertiary amine, which exhibited the typical CO2 response behavior. In this study, the phase diagram of the SFMEs consisting of tripropylamine (TPA), ethanol, and water was readily prepared via the measurements of electrical conductivity. The CO2 response behavior of SFME was confirmed by determination of conductivity and measurement of the average diameter of SFME, which was mainly dependent on the protonation of TPA induced by the additional CO2. The transition of protonated TPA to a more hydrophilic nature from lipophilicity to hydrophilicity should be responsible for the variation of SFME average diameter. In addition, the SFMEs exhibited remarkable solubilizing capacity of crude oil, and three types of SFMEs achieved more than 80% oil removal rate in the washing process of oil sands. It was noted that both oil-in-water and bicontinuous SFMEs could be circularly utilized at least three times with a relatively high oil removal rate (%). Our work provided the insight perspective on the mechanism of SFMEs with a CO2 response behavior.
Collapse
Affiliation(s)
- Lin Song
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fuling Zhang
- Exploration and Development Research Institute of Daqing Oilfield Limited Company, Daqing 163712, Heilongjiang, PR China
| | - Haidong Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanbo Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiuyu Xie
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fangning Fan
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shijie Wen
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
2
|
Shao M, Wang Y, Liu P, Fu L, Zhu T, Li X. Synthesis and Evaluation of Interfacial Properties and Carbon Capture Capacities of the Imidazolium-Based Ionic Liquid Surfactant. ACS OMEGA 2023; 8:21113-21119. [PMID: 37332779 PMCID: PMC10269245 DOI: 10.1021/acsomega.3c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
Ionic liquid as a chemical flooding agent has broad application prospect in enhancing oil recovery. In this study, a bifunctional imidazolium-based ionic liquid surfactant was synthesized, and its surface-active, emulsification capacity, and CO2 capture performance were investigated. The results show that the synthesized ionic liquid surfactant combines the characteristics of reducing interfacial tension, emulsification, and CO2 capture. The IFT values for [C12mim][Br], [C14mim][Br], and [C16mim][Br] could decrease from 32.74 mN/m to 3.17, 0.54, and 0.051 mN/m, respectively, with increasing concentration. In addition, the emulsification index values are 0.597 for [C16mim][Br], 0.48 for [C14mim][Br], and 0.259 for [C12mim][Br]. The surface-active and emulsification capacity of ionic liquid surfactants improved with the increase in alkyl chain length. Furthermore, the absorption capacities reach 0.48 mol CO2 per mol of ionic liquid surfactant at 0.1 MPa and 25 °C. This work provides theoretical support for further CCUS-EOR research and the application of ionic liquid surfactants.
Collapse
Affiliation(s)
- Minglu Shao
- State
Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective
Development, Beijing 100083, China
- Research
and Development Center for the Sustainable Development of Continental
Sandstone Mature Oilfield by National Energy Administration, Beijing 102206, China
- School
of Petroleum Engineering, School of Energy, ChangZhou University, Changzhou 213164, China
| | - Youqi Wang
- State
Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective
Development, Beijing 100083, China
- Research
and Development Center for the Sustainable Development of Continental
Sandstone Mature Oilfield by National Energy Administration, Beijing 102206, China
| | - Ping Liu
- State
Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective
Development, Beijing 100083, China
- Research
and Development Center for the Sustainable Development of Continental
Sandstone Mature Oilfield by National Energy Administration, Beijing 102206, China
| | - Lipei Fu
- School
of Petroleum Engineering, School of Energy, ChangZhou University, Changzhou 213164, China
| | - Tongyu Zhu
- Production
Optimization Business Division of China Oilfield Services Limited, Tianjin 300459, China
| | - Xiaoxiao Li
- Production
Optimization Business Division of China Oilfield Services Limited, Tianjin 300459, China
| |
Collapse
|
3
|
Nie C, Zhang Y, Du H, Han G, Yang J, Li L, HongjunWu, Wang B, Wang X. A Molecular modeling and Experimental Study of Solar Thermal Role on Interfacial Film of Emulsions for Elucidating and Executing Efficient Solar Demulsification. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
A novel cationic-modified chitosan flocculant efficiently treats alkali‒surfactant‒polymer flooding-produced water. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Xia X, Ma J, Geng S, Liu F, Yao M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int J Mol Sci 2022; 24:74. [PMID: 36613516 PMCID: PMC9820792 DOI: 10.3390/ijms24010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| |
Collapse
|