1
|
Lu H, Wu X, Zhu P, Liu M, Li X, Xin X. A novel Bi 12O 17Cl 2/GO/Co 3O 4 Z-type heterojunction photocatalyst with ZIF-67 derivative modified for highly efficient degradation of antibiotics under visible light. J Colloid Interface Sci 2025; 677:1052-1068. [PMID: 39134080 DOI: 10.1016/j.jcis.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 10/09/2024]
Abstract
Levofloxacin (LVX) is difficult to be naturally degraded by microorganisms in water, and its residues in water will pose significant risks to human health and ecological environment. In this study, Bi12O17Cl2 was used as the main body, Bi12O17Cl2/GO/Co3O4 composite photocatalyst was prepared by pyrolysis of zeolitic imidazolate framework-67 (ZIF-67) combined with in-situ precipitation method and used to degrade LVX. A sequence of characterizations shows that addition of Co3O4 and graphene oxide (GO) increases the visible light response range, improves the separation efficiency of photogenerated electrons and holes (e--h+) of photocatalyst, and thus improves the degradation efficiency of LVX. Under the optimal reaction conditions, the LVX degradation rate of Bi12O17Cl2/1.5GO/7.5Co3O4 can reach 91.2 % at 120 min, and its reaction rate constant is the largest (0.0151 min-1), which is 2.17, 13.14 and 1.53 times that of Bi12O17Cl2, Co3O4 and Bi12O17Cl2/7.5Co3O4, respectively, showing better photocatalytic performance. Simultaneously, the recycling stability of Bi12O17Cl2/1.5GO/7.5Co3O4 was also verified. The capture experiments and electron EPR test results showed that superoxide radicals (•O2-) and photogenerated holes (h+) were the primary active substances in the reaction process. Finally, combined with HPLC-MS results, the photocatalytic degradation pathway of LVX was derived. This work will provide a theoretical basis for the design of Metal Organic Frameworks (MOFs)-derivative modified Bi12O17Cl2-based photocatalysts.
Collapse
Affiliation(s)
- Han Lu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xinling Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiya Xin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
2
|
Lu S, Liu H. Molecular Doping on Carbon Nitride for Efficient Photocatalytic Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13331-13338. [PMID: 38872351 DOI: 10.1021/acs.langmuir.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Molecular doping is an innovative approach to modify the electronic configuration of carbon nitride (CN) photocatalysts, enhancing visible light absorption and optimizing the recombination of electron-hole pairs in photocatalytic H2 generation. Unlike the conventional heteroatom incorporation strategy, molecular doping offers a more effective means of structure optimization and conjugated framework. This Perspective studies recent advancements in benzene-ring doping for CN, emphasizing the correlation between structure and photocatalytic activity. The advantages and disadvantages of molecular doping in CN are thoroughly demonstrated, underscoring the importance of utilizing molecular doping to fine-tune both electronic and physical structures for enhanced photocatalytic efficacy. Insights are provided on strategies to address limitations and explore new prospects in the field of molecular doping methodologies.
Collapse
Affiliation(s)
- Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
3
|
Kalantari Bolaghi Z, Rodriguez-Seco C, Yurtsever A, Ma D. Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:103. [PMID: 38202558 PMCID: PMC10781176 DOI: 10.3390/nano14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a metal-free photocatalyst used for visible-driven hydrogen production, CO2 reduction, and organic pollutant degradation. In addition to the most attractive feature of visible photoactivity, its other benefits include thermal and photochemical stability, cost-effectiveness, and simple and easy-scale-up synthesis. However, its performance is still limited due to its low absorption at longer wavelengths in the visible range, and high charge recombination. In addition, the exfoliated nanosheets easily aggregate, causing the reduction in specific surface area, and thus its photoactivity. Herein, we propose the use of ultra-thin porous g-C3N4 nanosheets to overcome these limitations and improve its photocatalytic performance. Through the optimization of a novel multi-step synthetic protocol, based on an initial thermal treatment, the use of nitric acid (HNO3), and an ultrasonication step, we were able to obtain very thin and well-tuned material that yielded exceptional photodegradation performance of methyl orange (MO) under visible light irradiation, without the need for any co-catalyst. About 96% of MO was degraded in as short as 30 min, achieving a normalized apparent reaction rate constant (k) of 1.1 × 10-2 min-1mg-1. This represents the highest k value ever reported using C3N4-based photocatalysts for MO degradation, based on our thorough literature search. Ultrasonication in acid not only prevents agglomeration of g-C3N4 nanosheets but also tunes pore size distribution and plays a key role in this achievement. We also studied their performance in a photocatalytic hydrogen evolution reaction (HER), achieving a production of 1842 µmol h-1 g-1. Through a profound analysis of all the samples' structure, morphology, and optical properties, we provide physical insight into the improved performance of our optimized porous g-C3N4 sample for both photocatalytic reactions. This research may serve as a guide for improving the photocatalytic activity of porous two-dimensional (2D) semiconductors under visible light irradiation.
Collapse
Affiliation(s)
| | - Cristina Rodriguez-Seco
- Centre Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, QC J3X 1P7, Canada; (Z.K.B.); (A.Y.)
| | | | - Dongling Ma
- Centre Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, QC J3X 1P7, Canada; (Z.K.B.); (A.Y.)
| |
Collapse
|
4
|
Tran DD, Vuong HT, Nguyen DV, Ly PP, Minh Phan PD, Khoi VH, Mai PT, Hieu NH. Revisiting the roles of dopants in g-C 3N 4 nanostructures for piezo-photocatalytic production of H 2O 2: a case study of selenium and sulfur. NANOSCALE ADVANCES 2023; 5:2327-2340. [PMID: 37056618 PMCID: PMC10089114 DOI: 10.1039/d2na00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The sustainable production of hydrogen peroxide (H2O2) from oxygen and water has become an exciting research hotspot in the scientific community due to the importance of this fine chemical in various fields. Besides, piezo-photocatalysis is an emerging star for generating H2O2 from these green reagents. For developing catalysts for this specific application, doping heteroatoms into carbon-based materials such as graphitic carbon nitrides (g-C3N4) is a growing fascination among worldwide scientists. However, systematic study on the effects of doping precursors on the catalytic results is still rare. Herein, we fabricated sulfur (S) and selenium (Se) doped g-C3N4 with various doping precursors to evaluate the effects of these agents on the production of H2O2 under light and ultrasound irradiation. Based on the results, Se-doped g-C3N4 gave an outstanding catalytic performance compared to S-doped g-C3N4, even in a significantly low quantity of Se. In order to fully understand the chemical, physical, optical, and electronic properties of pristine g-C3N4 and its derivatives, the as-prepared materials were thoroughly analyzed with various tools. Thus, this study would give more profound insights into doping techniques for carbon-based materials and encourage further research on the design and development of piezo-photocatalysts for practical applications.
Collapse
Affiliation(s)
- Dat Do Tran
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoai-Thanh Vuong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
- Department of Chemistry and Biochemistry, University of California Santa Barbara (UCSB) Santa Barbara California 93106 USA
| | - Duc-Viet Nguyen
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
- School of Chemical Engineering, University of Ulsan Ulsan South Korea
| | - Pho Phuong Ly
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Pham Duc Minh Phan
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Vu Hoang Khoi
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
- School of Chemical Engineering, University of Ulsan Ulsan South Korea
| | - Phong Thanh Mai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
5
|
Functional cellulose aerogel nanocomposites with enhanced adsorption capability and excellent photocatalytic performance. Int J Biol Macromol 2023; 231:123393. [PMID: 36696852 DOI: 10.1016/j.ijbiomac.2023.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
A novel functional cellulose carbon aerogel@Na2Ti3O7@Cu2O (CA@Na2Ti3O7@Cu2O) nanocomposite was prepared by in situ growth technique and impregnation method, and its photocatalytic and adsorption properties were explored. The cationic intercalation structure of Na2Ti3O7 nanosheets gives CA@Na2Ti3O7@Cu2O nanocomposites excellent adsorption capacity of heavy metal ions (31.0-118.7 mg/g). The Cu2O nanoparticles in CA@Na2Ti3O7@Cu2O nanocomposite showed excellent photocatalytic activity, and the removal rate of methylene blue (MB) was up to 99 %. Furthermore, the CA@Na2Ti3O7@Cu2O nanocomposites could be easily regenerated and reused, providing a new way to effectively solve the problem of wastewater treatment containing heavy metal ions and organic dyes.
Collapse
|
6
|
Wudil Y, Ahmad U, Gondal M, Al-Osta MA, Almohammedi A, Said R, Hrahsheh F, Haruna K, Mohammed J. Tuning of Graphitic Carbon Nitride (g-C3N4) for Photocatalysis: A Critical Review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|