1
|
Liu Z, Yang Y, Zhao X, Wang T, He L, Nan X, Vidović D, Bai P. A universal mass tag based on polystyrene nanoparticles for single-cell multiplexing with mass cytometry. J Colloid Interface Sci 2023; 639:434-443. [PMID: 36822043 DOI: 10.1016/j.jcis.2023.02.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Mass cytometry (MC) is an emerging bioanalytical technique for high-dimensional biomarkers interrogation simultaneously on individual cells. However, the sensitivity and multiplexed analysis ability of MC was highly restricted by the current metal chelating polymer (MCP) mass tags. Herein, a new design strategy for MC mass tags by using a commercial available and low cost classical material, polystyrene nanoparticle (PS-NP) to carry metals was reported. Unlike inorganic materials, sub-micron-grade metal-loaded polystyrene can be easily detected by MC, thus it is not essential to pursue extremely small particle size in this mass tag design strategy. An altered cell staining buffer can significantly lower the nonspecific binding (NSB) of non-functionalized PS-NPs, revealing another method to lower NSB beside surface modification. The metal doped PS-NP_Abs mass tags showed high compatibility with MCP mass tags and 5-fold higher sensitivity. By using Hf doped PS-NP_Abs as mass tags, four new MC detection channels (177Hf, 178Hf, 179Hf and 180Hf) were developed. In general, this work provides a new strategy in designing MC mass tags and lowering NSB, opening up possibility of introducing more potential MC mass tag candidates.
Collapse
Affiliation(s)
- Zhizhou Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guoke Medical Technology Development Co., Ltd, Shandong 250013, People's Republic of China.
| | - Yu Yang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Xiang Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, China
| | - Tong Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Liang He
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guoke Medical Technology Development Co., Ltd, Shandong 250013, People's Republic of China
| | - Xueyan Nan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Dragoslav Vidović
- School of Chemistry, Faculty of Sciences, Monash University, 3800 Clayton, Australia
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
2
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|