1
|
Lee JH, Hyun JE, Kim J, Yang J, Zhang H, Ahn H, Lee S, Kim JH, Lim T. A highly conductive, robust, self-healable, and thermally responsive liquid metal-based hydrogel for reversible electrical switches. J Mater Chem B 2024; 12:5238-5247. [PMID: 38699788 DOI: 10.1039/d4tb00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study introduces a thermally responsive smart hydrogel with enhanced electrical properties achieved through volume switching. This advancement was realized by incorporating multiscale liquid metal particles (LMPs) into the PNIPAM hydrogel during polymerization, using their inherent elasticity and conductivity when deswelled. Unlike traditional conductive additives, LMPs endow the PNIPAM hydrogel with a remarkably consistent volume switching ratio, significantly enhancing electrical switching. This is attributed to the minimal nucleation effect of LMPs during polymerization and their liquid-like behavior, like vacancies in the polymeric hydrogel under compression. The PNIPAM/LMP hydrogel exhibits the highest electrical switching, with an unprecedented switch of 6.1 orders of magnitude. Even after repeated swelling/deswelling cycles that merge some LMPs and increase the conductivity when swelled, the hydrogel consistently maintains an electrical switch exceeding 4.5 orders of magnitude, which is still the highest record to date. Comprehensive measurements reveal that the hydrogel possesses robust mechanical properties, a tissue-like compression modulus, biocompatibility, and self-healing capabilities. These features make the PNIPAM/LMP hydrogel an ideal candidate for long-term implantable bioelectronics, offering a solution to the mechanical mismatch with dynamic human tissues.
Collapse
Affiliation(s)
- Joo Hyung Lee
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, South Korea
| | - Ji Eun Hyun
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongbeom Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jungin Yang
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| | - Huanan Zhang
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hyunchul Ahn
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, South Korea.
| | - Sohee Lee
- Department of Clothing and Textiles, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, South Korea.
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, South Korea.
| | - Taehwan Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
2
|
Nwobodo I, Louis H, Unimuke TO, Ikenyirimba OJ, Iloanya AC, Mathias GE, Osabor VN, Ahuekwe EF, Adeyinka AS. Molecular Simulation of the Interaction of Diclofenac with Halogen (F, Cl, Br)-Encapsulated Ga 12As 12 Nanoclusters. ACS OMEGA 2023; 8:17538-17551. [PMID: 37251115 PMCID: PMC10210178 DOI: 10.1021/acsomega.2c06097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Diclofenac is one of the most frequently consumed over-the-counter anti-inflammatory agents globally, and several reports have confirmed its global ubiquity in several environmental compartments. Therefore, the need to develop more efficient monitoring/sensing devices with high detection limits is still needed. Herein, quantum mechanical simulations using density functional theory (DFT) computations have been utilized to evaluate the nanosensing efficacy and probe the applicability of Ga12As12 nanostructure and its engineered derivatives (halogen encapsulation F, Br, Cl) as efficient adsorbent/sensor materials for diclofenac. Based on the DFT computations, it was observed that diclofenac preferred to interact with the adsorbent material by assuming a flat orientation on the surface while interacting via its hydrogen atoms with the As atoms at the corner of the GaAs cage forming a polar covalent As-H bond. The adsorption energies were observed to be in the range of -17.26 to -24.79 kcal/mol and therefore suggested favorable adsorption with the surface. Nonetheless, considerable deformation was observed for the Br-encapsulated derivative, and therefore, its adsorption energy was observed to be positive. Additionally, encapsulation of the GaAs nanoclusters with halogens (F and Cl) enhanced the sensing attributes by causing a decrease in the energy gap of the nanocluster. And therefore, this suggests the feasibility of the studied materials as potentiometric sensor materials. These findings could offer some implications for the potential application of GaAs and their halogen-encapsulated derivatives for electronic technological applications.
Collapse
Affiliation(s)
- Ikechukwu
C. Nwobodo
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
| | - Tomsmith O. Unimuke
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
| | - Onyinye J. Ikenyirimba
- Department
of Chemistry Education, Alex Ekwueme Federal
University, P.M.B. 1010, Abakaliki, Ebonyi State010, Nigeria
| | - Anthony C. Iloanya
- Department
of Physics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Gideon E. Mathias
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
| | - Vincent N. Osabor
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
| | - Eze F. Ahuekwe
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B. 1115, Calabar540221, Nigeria
- Department
of Biological Sciences, Covenant University, Ota112104, Ogun State, Nigeria
| | - Adedapo S. Adeyinka
- Research
Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg2006, South Africa
| |
Collapse
|
3
|
Biamont-Rojas IE, Cardoso-Silva S, Alves de Lima Ferreira P, Alfaro-Tapia R, Figueira R, Pompêo M. Chronostratigraphy elucidates environmental changes in lacustrine sedimentation rates and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27521-0. [PMID: 37171726 DOI: 10.1007/s11356-023-27521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
All changes taking place in a watershed have repercussions on lacustrine environments, being these, the sink of all activities occurring in the basin. Lake Titicaca, the world's highest and navigable lake, is not unfamiliar with these phenomena that can alter the sedimentation dynamics and metal accumulation. This study aimed to identify temporal trends of sedimentation rates by employing a geochronological analysis (210Pb, 137Cs) and to propose metal background values in Puno Bay, as well as to identify metal concentrations (As, Ba, Ca, Cr, Cu, K, Mg, Mo, Ni, Pb, Zn) in the projected timeline to propose, for the first time, background values in Puno Bay. Two sediment cores were collected from the outer and inner bays. Sediment rate (SR) was calculated through the excess of 210Pb (210Pbxs) applying the Constant Flux Constant Sedimentation (CFCS) model. Results show that SR in the outer bay was 0.48 ± 0.08 cm a-1 and for the inner bay was 0.64 ± 0.07 cm a-1. Sediment quality guidelines (SQGs) did not indicate toxicity was likely to occur, except for As. However, enrichment factors (EFs) indicated that all metal accumulation is geogenic. Climatic factors had a marked influence on sedimentation rates for the outer bay, and in the case of the inner bay, it was a sum of climatic and human-based factors.
Collapse
Affiliation(s)
- Ivan Edward Biamont-Rojas
- Institute of Science and Technology, State University of São Paulo (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil.
| | - Sheila Cardoso-Silva
- Oceanographic Institute, University of São Paulo (USP), Praça do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | - Paulo Alves de Lima Ferreira
- Oceanographic Institute, University of São Paulo (USP), Praça do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | - René Alfaro-Tapia
- Faculty of Biological Sciences, National University of the Altiplano (UNAP), Av. Floral N° 1153, 21000, Puno, Peru
| | - Rubens Figueira
- Oceanographic Institute, University of São Paulo (USP), Praça do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | - Marcelo Pompêo
- Ecology Department, Biosciences Institute, University of São Paulo (USP), Rua do Matão, trav. 14, n° 321, Cidade Universitária, São Paulo, 05508-090, Brazil
| |
Collapse
|