1
|
Tang S, Li Q, Li W, Chen S. Enhancement and Predictable Guidance of Coalescence-Induced Droplet Jumping on V-Shaped Superhydrophobic Surfaces with a Ridge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133052 DOI: 10.1021/acs.langmuir.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Coalescence-induced droplet jumping has attracted significant attention in recent years. However, achieving a high jumping velocity while predictably regulating the jumping direction of the merged droplets by simple superhydrophobic structures remains a challenge. In this work, a novel V-shaped superhydrophobic surface with a ridge is conceived for enhanced and predictably guided coalescence-induced droplet jumping. By conducting experiments and lattice Boltzmann simulations, it is found that the presence of a ridge in the V-shaped superhydrophobic surface can modify the fluid dynamics during the droplet coalescence process, resulting in a much higher droplet jumping velocity than that achieved by the V-shaped superhydrophobic surface without a ridge. The enhancement of the droplet jumping velocity is mainly attributed to the combined effect of the earlier and more sufficient impingement between the liquid bridge and the ridge, as well as the accelerated droplet contraction by redirecting the internal liquid flow toward the jumping direction. A high normalized jumping velocity of V j * ≈ 0.71 is achieved by the newly designed surface, with a 930% increase in the energy conversion efficiency in comparison with that on a flat surface. Moreover, adjusting the opening direction of the V-groove at different groove angles is found to be an effective method to regulate the droplet jumping direction and expand the range of the jumping angle. Particularly, the droplet jumping angle can be well predicted based on the rotational angle (ω) and the groove angle (α), i.e., θj,p ≈ 90° - 0.5α - ω.
Collapse
Affiliation(s)
- Shi Tang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wanxin Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Shoutian Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Huang Y, Wen G, Fan Y, He M, Sun W, Tian X, Huang S. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation. ACS NANO 2024; 18:6359-6372. [PMID: 38363638 DOI: 10.1021/acsnano.3c11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
On-demand droplet transportation is of great significance for numerous applications. Although various strategies have been developed for droplet transportation, out-of-surface three-dimensional (3D) transportation of droplets remains challenging. Here, a versatile droplet transportation strategy based on magnetic-actuated jumping (MAJ) of droplets on superhydrophobic grooved surfaces (SHGSs) is presented, which enables 3D, remote, and precise manipulation of droplets even in enclosed narrow spaces. To trigger MAJ, an electromagnetic field is utilized to deform the droplet on the SHGS with the aid of an attached magnetic particle, thereby the droplet acquires excess surface energy. When the electromagnetic field is quickly removed, the excess surface energy is partly converted into kinetic energy, allowing the droplet to jump atop the surface. Through high-speed imaging and numerical simulation, the working mechanism and size matching effect of MAJ are unveiled. It is found that the MAJ behavior can only be observed if the sizes of the droplets and the superhydrophobic grooves are matched, otherwise unwanted entrapment or pinch-off effects would lead to failure of MAJ. A regime diagram which serves as a guideline to design SHGSs for MAJ is proposed. The droplet transportation capacities of MAJ, including in-surface and out-of-surface directional transportation, climbing stairs, and crossing obstacles, are also demonstrated. With the ability to remotely manipulate droplets in enclosed narrow spaces without using any mechanical moving parts, MAJ can be used to design miniaturized fluidic platforms, which exhibit great potential for applications in bioassays, microfluidics, droplet-based switches, and microreactions.
Collapse
Affiliation(s)
- Yusheng Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Guifeng Wen
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Fan
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuelin Tian
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Coalescence-induced jumping of in-plane moving droplets: Effects of initial velocity and sideslip angle. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Li Y, Du J, Wu X, Lu G, Min Q. How macrostructures enhance droplet coalescence jumping: A mechanism study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Gao S, Wu X. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12674-12681. [PMID: 36201740 DOI: 10.1021/acs.langmuir.2c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coalescence-induced droplet jumping could promote self-removal of droplets, which has broad potential in related fields such as heat-transfer enhancement, self-cleaning, energy harvesting, electricity generation, radiative cooling, and antifrosting/icing. In practical applications, droplets often have initial velocity under external forces. In this work, the coalescence-induced jumping of centripetal moving droplets on a superhydrophobic plane is experimentally observed using a high-speed photography platform, and the effects of the initial velocity of the moving droplet on jumping velocity, energy conversion, and droplet morphology are numerically investigated. Results show that the jumping velocity decreases and then increases as the We number of the moving droplet increases. The main source of the total kinetic energy of the coalesced droplet switches from the released surface energy to the initial kinetic energy of the moving droplet with the increasing We number, but the proportion of the jumping kinetic energy to the total kinetic energy decreases. Besides, the initial velocity of the moving droplet intensifies the droplet deformation and accelerates the process of coalescence-induced jumping. Through theoretical analysis, it is found that the jumping velocity is affected by two mechanisms: the deformation intensification and the liquid bridge impact enhancement.
Collapse
Affiliation(s)
- Sihang Gao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|