1
|
Lapoot L, Jabeen S, Durantini AM, Greer A. Role of curvature in acridone for 1 O 2 oxidation of a natural product homoallylic alcohol: A novel iso-hydroperoxide intermediate. Photochem Photobiol 2024; 100:455-464. [PMID: 37602967 DOI: 10.1111/php.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
A density functional theoretical (DFT) study is presented, implicating a 1 O2 oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and an iso-hydroperoxide intermediate [R(H)O+ -O- ] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a 1 O2 'ene' reaction. Instead, the dihydrobenzofuran arises by 1 O2 oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidal N-methyl group. This curvature facilitates the formation of the iso-hydroperoxide, which is analogous to the iso species CH2 I+ -I- and CHI2 + -I- formed by UV photolysis of CH2 I2 and CHI3 . The iso-hydroperoxide is also structurally reminiscent of carbonyl oxides (R2 C=O+ -O- ) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which the iso-hydroperoxide's fate relates to O-transfer and H2 O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés M Durantini
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Durantini AM, Lapoot L, Jabeen S, Ghosh G, Bipu J, Essang S, Singh BC, Greer A. Tuning the 1O 2 Oxidation of a Phenol at the Air/Solid Interface of a Nanoparticle: Hydrophobic Surface Increases Oxophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37497839 DOI: 10.1021/acs.langmuir.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although silica surfaces have been used in organic oxidations for the production of peroxides, studies of airborne singlet oxygen at interfaces are limited and have not found widespread advantages. Here, with prenyl phenol-coated silica and delivery of singlet oxygen (1O2) through the gas phase, we uncover significant selectivity for dihydrofuran formation over allylic hydroperoxide formation. The hydrophobic particle causes prenyl phenol to produce an iso-hydroperoxide intermediate with an internally protonated oxygen atom, which leads to dihydrofuran formation as well as O atom transfer. In contrast, hydrophilic particles cause prenyl phenol to produce allylic hydroperoxide, due to phenol OH hydrogen bonding with SiOH surface groups. Mechanistic insight is provided by air/nanoparticle interfaces coated with the prenyl phenol, in which product yield was 6-fold greater on the hydrophobic nanoparticles compared to the hydrophilic nanoparticles and total rate constants (ASI-kT) of 1O2 were 13-fold greater on the hydrophobic vs hydrophilic nanoparticles. A slope intersection method was also developed that uses the airborne 1O2 lifetime (τairborne) and surface-associated 1O2 lifetime (τsurf) to quantitate 1O2 transitioning from volatile to non-volatile and surface boundary (surface···1O2). Further mechanistic insights on the selectivity of the reaction of prenyl phenol with 1O2 was provided by density functional theory calculations.
Collapse
Affiliation(s)
- Andrés M Durantini
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Johirul Bipu
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Serah Essang
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Britney C Singh
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Jabeen S, Ghosh G, Lapoot L, Durantini AM, Greer A. Sensitized Photooxidation of Ortho-prenyl Phenol: Biomimetic Dihydrobenzofuran Synthesis and Total 1 O 2 Quenching. Photochem Photobiol 2022; 99:637-641. [PMID: 35977738 DOI: 10.1111/php.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The sensitized photooxidation of ortho-prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2-(prop-1-en-2-yl)-2,3-dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT ) of singlet oxygen with prenyl phenol by ~10-fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen addition to prenyl site due to hydrogen bonding with phenol OH group, which causes a divergence away from the singlet oxygen 'ene' reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation.
Collapse
Affiliation(s)
- Shakeela Jabeen
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Andrés M Durantini
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|