1
|
Noda I, Park Y, Jung YM. Correlation Filters to Streamline Analysis of Congested Spectral Datasets. APPLIED SPECTROSCOPY 2025:37028251320106. [PMID: 40094930 DOI: 10.1177/00037028251320106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The correlation filter (CF) technique is introduced as a versatile tool for data pretreatment to selectively attenuate interfering or overlapping signals of congested spectra. This technique leverages two-dimensional correlation spectroscopy (2D-COS) to create a filter multiplier that effectively addresses limitations inherent in traditional null-space projection (NSP) methods based on least-squares subtraction. We apply CF to the analysis of a model solution mixture system undergoing spontaneous evaporation, where volatile solvent concentrations change concurrently but at only slightly different rates. Despite the similarity of these parallel processes, CF successfully separates the overlapped dynamics of individual components by attenuating dominant signal contributions. CF also enables streamlined 2D codistribution spectroscopy (2D-CDS) analysis to determine the sequential order of component appearance. Multiple layers of CF can be applied to isolate individual component dynamics. Heterocomponent 2D correlation can then recover lost information by recombining CF-treated spectra. CF is applicable to two-trace two-dimensional (2T2D) correlation for comparative spectral analysis of a pair of spectra. CF treatment is expected to be a useful tool beyond 2D-COS applicable to many areas of spectral analyses, including the environmental and interfacial studies.
Collapse
Affiliation(s)
- Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
2
|
Wahiduzzaman M, Lawrence J, Moreno-Gongora A, Xu J, Casadonte DJ, Botte GG, Korzeniewski C. Confocal Raman Microscopy as a Probe of Material Deconstruction in Processed Low-Density Polyethylene Particles. APPLIED SPECTROSCOPY 2025:37028251322142. [PMID: 40079772 DOI: 10.1177/00037028251322142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Confocal Raman microscopy was applied to detect structural change within individual particles of low-density polyethylene (LDPE) following chemical and electrochemical processing steps that aimed to facilitate material decomposition. A high numerical aperture (NA) oil-immersion objective enabled depth-profiling through the near surface region (20 μm-40 μm) of irregularly shaped particles with an axial spatial resolution < 2 μm estimated from measurements of instrument detection efficiency profiles. Changes in vibrational bands sensitive to polyethylene crystallinity were evident following treatments and linked to the release of low molecular weight compounds present as additives and products of processing. Effects of processing were probed by monitoring the rise of Raman scattering intensity in vibrational modes associated with polyethylene chains in a zig-zag (trans) conformation near 1128 cm-1, 1294 cm-1, and 1418 cm-1, signaling chain clustering and development of organized, crystalline-like assemblies. Pristine LDPE particles displayed a uniform structure across the near surface region, while particles treated initially with chemical extractant and then further processed displayed increasingly enhanced crystallinity up to the maximum depth probed (40 μm). As a step toward measurements on ensembles of particles, least squares modeling was adapted to derive pure component spectra reflecting crystallinity change within spectral datasets. The work demonstrates high spatial resolution Raman depth-profiling for the characterization of processed polymers using a high NA immersion objective to overcome the limitations of air-objectives often used for confocal Raman microscopy.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jeremy Lawrence
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Ashley Moreno-Gongora
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jiahe Xu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Dominick J Casadonte
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Gerardine G Botte
- Institute for Sustainability and Circular Economy, Department of Chemical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Carol Korzeniewski
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Myres GJ, Kitt JP, Harris JM. Surface-Area Enhanced Raman Spectroscopy of DNA in Porous Silica: A Quantitative and Reproducible Alternative to Plasmonic-Based SERS. Anal Chem 2024; 96:7679-7686. [PMID: 38698534 DOI: 10.1021/acs.analchem.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Despite the success of surface-enhanced Raman spectroscopy (SERS) for detecting DNA immobilized on plasmonic metal surfaces, its quantitative response is limited by the rapid falloff of enhancement with distance from the metal surface and variations in sensitivity that depend on orientation and proximity to plasmonic "hot spots". In this work, we assess an alternative approach for enhancing detection by immobilizing DNA on the interior surfaces of porous silica particles. These substrates provide over a 1000-fold greater surface area for detection compared to a planar support. The porous silica substrate is a purely dielectric material with randomly oriented internal surfaces, where scattering is independent of proximity and orientation of oligonucleotides relative to the silica surface. We characterize the quantitative response of Raman scattering from DNA in porous silica particles with sequences used in previous SERS investigations of DNA for comparison. The results show that Raman scattering of DNA in porous silica is independent of distance of nucleotides from the silica surface, allowing detection of longer DNA strands with constant sensitivity. The surface area enhancement within particles is reproducible (<4% particle-to-particle variation) owing to the uniform internal pore structure and surface chemistry of the silica support. DNA immobilization with a bis-thiosuccinimide linker provides a Raman-active internal standard for quantitative interpretation of Raman scattering results. Despite the high (30 mM) concentrations of immobilized DNA within porous silica particles, they can be used to measure nanomolar binding affinities of target molecules to DNA by equilibrating a very small number of particles with a sufficiently large volume of low-concentration solution of target molecules.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
4
|
Peruzzi JA, Vu TQ, Gunnels TF, Kamat NP. Rapid Generation of Therapeutic Nanoparticles Using Cell-Free Expression Systems. SMALL METHODS 2023; 7:e2201718. [PMID: 37116099 PMCID: PMC10611898 DOI: 10.1002/smtd.202201718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
The surface modification of membrane-based nanoparticles, such as liposomes, polymersomes, and lipid nanoparticles, with targeting molecules, such as binding proteins, is an important step in the design of therapeutic materials. However, this modification can be costly and time-consuming, requiring cellular hosts for protein expression and lengthy purification and conjugation steps to attach proteins to the surface of nanocarriers, which ultimately limits the development of effective protein-conjugated nanocarriers. Here, the use of cell-free protein synthesis systems to rapidly create protein-conjugated membrane-based nanocarriers is demonstrated. Using this approach, multiple types of functional binding proteins, including affibodies, computationally designed proteins, and scFvs, can be cell-free expressed and conjugated to liposomes in one-pot. The technique can be expanded further to other nanoparticles, including polymersomes and lipid nanoparticles, and is amenable to multiple conjugation strategies, including surface attachment to and integration into nanoparticle membranes. Leveraging these methods, rapid design of bispecific artificial antigen presenting cells and enhanced delivery of lipid nanoparticle cargo in vitro is demonstrated. It is envisioned that this workflow will enable the rapid generation of membrane-based delivery systems and bolster our ability to create cell-mimetic therapeutics.
Collapse
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Timothy Q. Vu
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neha P. Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Xu J, Koh M, Minteer SD, Korzeniewski C. In Situ Confocal Raman Microscopy of Redox Polymer Films on Bulk Electrode Supports. ACS MEASUREMENT SCIENCE AU 2023; 3:127-133. [PMID: 37090254 PMCID: PMC10120033 DOI: 10.1021/acsmeasuresciau.2c00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 05/03/2023]
Abstract
A spectroelectrochemical cell is described that enables confocal Raman microscopy studies of electrode-supported films. The confocal probe volume (∼1 μm3) was treated as a fixed-volume reservoir for the observation of potential-induced changes in chemical composition at microscopic locations within an ∼20 μm thickness layer of a redox polymer cast onto a 3 mm diameter carbon disk electrode. Using a Raman system with high collection efficiency and wavelength reproducibility, spectral subtraction achieved excellent rejection of background interferences, opening opportunities for measuring within micrometer-scale thickness redox films on widely available, low-cost, and conventional carbon disk electrodes. The cell performance and spectral difference technique are demonstrated in experiments that detect transformations of redox-active molecules exchanged into electrode-supported ionomer membranes. The in situ measurements were sensitive to changes in the film oxidation state and swelling/deswelling of the polymer framework in response to the uptake and discharge of charge-compensating electrolyte ions. The studies lay a foundation for confocal Raman microscopy as a quantitative in situ probe of processes within electrode-immobilized redox polymers under development for a range of applications, including electrosynthesis, energy conversion, and chemical sensing.
Collapse
Affiliation(s)
- Jiahe Xu
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas79409-1061, United States
| | - Miharu Koh
- Department
of Chemistry, University of Utah, Salt City, Utah84112, United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt City, Utah84112, United States
| | - Carol Korzeniewski
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas79409-1061, United States
| |
Collapse
|