1
|
Ant Bursalı E. Novel Tannic Acid-Modified Cobalt-Based Metal-Organic Framework: Synthesis, Characterization, and Antimicrobial Activity. ACS OMEGA 2024; 9:18946-18956. [PMID: 38708246 PMCID: PMC11064010 DOI: 10.1021/acsomega.3c09169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of hybrid inorganic-organic materials with typical porous structures and a unique morphology. Due to their diversity, they are extensively used in a wide range of applications such as environmental, catalysis, biomedicine, etc. In this study, a novel cobalt-based MOF modified with tannic acid (Co-TPA/TA) (TPA: terephthalic acid; TA: tannic acid) as a promising material for antimicrobial agents was synthesized and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and thermogravimetric analysis and compared with an as-synthesized cobalt-based framework. Co-TPA/TA demonstrated good antimicrobial efficiency under optimum conditions against yeast Candida albicans ATCC 10231, Gram-negative Escherichia coli ATCC 8739, and Gram-positive Staphylococcus aureus ATCC 6538 with an inhibition zone ranging from 14 to 20 mm. Reduced ATP levels, generation of reactive oxygen species, membrane damage from cobalt ion release, and development of an alkaline microenvironment could all be contributing factors to the possible antimicrobial pathways. The novel framework can be obtained using simple, affordable, and easily accessible commercial ligands and is considered to have the potential to be used as an antimicrobial material in the future.
Collapse
Affiliation(s)
- Elif Ant Bursalı
- Department of Chemistry, Dokuz
Eylul University, Tınaztepe, Izmir 35390, Turkiye
| |
Collapse
|
2
|
Chen J, Frempong KEB, Ding P, He G, Zhou Y, Kuang M, Wei Y, Zhou J. Plant polyphenol surfactant construction with strong surface activity and chelation properties as efficient decontamination of UO 22+ on cotton fabric. Int J Biol Macromol 2024; 254:127451. [PMID: 37871720 DOI: 10.1016/j.ijbiomac.2023.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Chemically synthesized surfactants have promising applications in the treatment of uranium, however, their hazardous environmental effects, non-biodegradability, and numerous drawbacks prevent them from being widely used in practice. Herein, we successfully synthesized a green chelating and foaming integrated surfactant (BTBS) by Mannich reaction and acylation of bayberry tannin for the effective removal of UO22+ from aqueous environments or solid surfaces. The as-prepared surfactant was systematically characterized by FT-IR, showing that the hydrophobic groups were successfully grafted onto tannin. The modified material showed better foaming and emulsifying properties, which proved this method could improve the amphiphilicity of tannin. Moreover, for the first time, a foam fractionation method in conjunction with a tannin-based surfactant was applied for UO22+ removal from water. This surfactant was used as a co-surfactant and could readily remove 90 % of UO22+ (20 mg L-1) from water. The removal of UO22+ could be completed in a short time (30 min), and the maximum adsorption capacity was determined as 175.9 mg g-1. This surfactant can also be used for efficient decontamination of uranium-contaminated cotton cloth with a high removal rate of 94.55 %. In addition, the mechanism studies show that the adsorption of BTBS for UO22+ can be mainly attributed to a chelating mechanism between UO22+ and the adjacent phenolic hydroxyls. The novel biomass-derived BTBS with advantages such as high capture capacity, environmental friendliness, and cost-effectiveness suggests that it plays an important role in the remediation of radionuclide pollution.
Collapse
Affiliation(s)
- Jialang Chen
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Kwame Eduam Baiden Frempong
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Pingping Ding
- The Collelge of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China
| | - Guiqiang He
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yan Zhou
- Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang, Sichuan 621000, PR China
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, PR China
| | - Yanxia Wei
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
3
|
Sohrabian B, Sobhanardakani S, Lorestani B, Cheraghi M, Nourmoradi H. Fabricating modified carbon sesame straw for adsorption of acetaminophen and ibuprofen from aqueous media: isotherm and kinetic models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104563-104576. [PMID: 37704819 DOI: 10.1007/s11356-023-29826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
As acetaminophen (ACT) and ibuprofen (IBP) have serious environmental impacts, despite their widespread use in many countries, the present research examined the effectiveness of activated carbon made from straw and sesame stubble in removing ACT and IBP from water. To that end, the as-synthesized adsorbent was functionalized using zinc chloride. The maximum adsorption capacities were found to be 51.7 mg g-1 for ACT and 63.7 mg g-1 for IBP. The adsorption kinetics and isotherm results showed that the pseudo-second-order (PSO) kinetics and Langmuir isotherm fit the data obtained from this study better than the other experimental models do. Also, the adsorption reached equilibrium within 120 min, and the optimal adsorbent dose and temperature were obtained as 1.0 mg and 25 °C, respectively. The mechanisms involved in the adsorption process would include acid-base, hydrogen bonding, electrostatic forces, and π-π interaction. Reusability studies revealed that the adsorbent still preserved about 89% and 82% of the adsorption performance for ACT and IBP, respectively, after seven repeated adsorption cycles. As the findings indicated, CSS/Zn could be accepted as a hopeful adsorbent to be used in pharmaceutical treatment.
Collapse
Affiliation(s)
- Behrouz Sohrabian
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Heshmatollah Nourmoradi
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
4
|
Wang RD, Guo YY, Wei WM, Zhao XH, Shen TZ, Wang L, Zhang WQ, Du L, Zhao QH. Functional Materials for Water Restoration: A "Fish Cage" for Efficient Capture of Pb(II) Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13688-13694. [PMID: 37683112 DOI: 10.1021/acs.langmuir.3c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this work, a "fish cage" material for trapping Pb(II) ions has been successfully obtained, which is a novel clathrate functionalized metal-oganic framework (Cage-MOF) by introducing free adsorption sites (SO42-). The three-dimensional (3D) cage structure of Cage-MOF gives it a larger contact area and can capture "swimming fish" (Pb(II)) like a "fishing cage" in a water solution. This is the first high-efficiency adsorption material obtained by introducing free coordination groups. Cage-MOF not only has excellent water stability but also improves the selectivity and affinity for Pb(II) ions in water because of the presence of sulfate adsorption sites, and its adsorption capacity is as high as 806 mg/g. This work shows a novel and effective idea for the synthesis of water restoration materials.
Collapse
Affiliation(s)
- Rui-Dong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Yuan-Yuan Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Wei-Ming Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Xu-Hui Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Tian-Ze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Lei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Wen-Qian Zhang
- College of Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Xinyang, Henan 464000, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| |
Collapse
|
5
|
Wang H, Ma G, Zhang K, Jia Z, Wang Y, Gao L, Liu B. Adsorption Behavior and Mechanism of Cesium Ions in Low-Concentration Brine Using Ammonium Molybdophosphate-Zirconium Phosphate on Polyurethane Sponge. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4583. [PMID: 37444898 DOI: 10.3390/ma16134583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/15/2023]
Abstract
Salt lake brine originating from Qinghai, China has abundant cesium resources and huge total reserves. The inorganic ion exchangers ammonium molybdophosphate (AMP) and zirconium phosphate (ZrP) have the significant advantages of separating and extracting Cs+ as a special adsorbent. Nevertheless, their high solubility in water leads to a decrease in their ability to adsorb Cs+ in aqueous solutions, causing problems such as difficulty with using adsorbents alone and a difficult recovery. In this work, an environmentally friendly polyurethane sponge (PU sponge) with a large specific surface area is employed as an adsorbent carrier by physically impregnating dopamine-coated AMP and ZrP onto a PU sponge, respectively. The experiment found that under the same conditions, the AMP/PU sponge performs better than the ZrP/PU sponge for Cs+ adsorption. When the amount of adsorbent reaches 0.025 g, the adsorption capacity reaches saturation. The adsorption efficiency remains above 80% when the concentration of Cs+ is 5-35 mg/L. The kinetic calculations show that adsorption is spontaneous, feasible, and has a higher driving force at high temperatures. In addition, the power and mechanism of the interaction between adsorbent and adsorbent are explained using the density functional theory calculation. This efficient, stable, and selective Cs+ adsorbent provides design guidelines.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Guihua Ma
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Ke Zhang
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Zhi Jia
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Yuzhuo Wang
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Li Gao
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Hessien M. Methylene Blue Dye Adsorption on Iron Oxide-Hydrochar Composite Synthesized via a Facile Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels' Waste. Molecules 2023; 28:4526. [PMID: 37299002 PMCID: PMC10254837 DOI: 10.3390/molecules28114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The toxicity of dyes has a long-lasting negative impact on aquatic life. Adsorption is an inexpensive, simple, and straightforward technique for eliminating pollutants. One of the challenges facing adsorption is that it is hard to collect the adsorbents after the adsorption. Adding a magnetic property to the adsorbents makes it easier to collect the adsorbents. The current work reports the synthesis of an iron oxide-hydrochar composite (FHC) and an iron oxide-activated hydrochar composite (FAC) through the microwave-assisted hydrothermal carbonization (MHC) technique, which is known as a timesaving and energy-efficient method. The synthesized composites were characterized using various techniques, such as FT-IR, XRD, SEM, TEM, and N2 isotherm. The prepared composites were applied in the adsorption of cationic methylene blue dye (MB). The composites were formed of crystalline iron oxide and amorphous hydrochar, with a porous structure for the hydrochar and a rod-like structure for the iron oxide. The pH of the point of zero charge (pHpzc) of the iron oxide-hydrochar composite and the iron oxide-activated hydrochar composite were 5.3 and 5.6, respectively. Approximately 556 mg and 50 mg of MB dye was adsorbed on the surface of 1 g of the FHC and FAC, respectively, according to the maximum adsorption capacity calculated using the Langmuir model.
Collapse
Affiliation(s)
- Manal Hessien
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Alahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Maity T, Aggarwal A, Dasgupta S, Velachi V, Singha Deb AK, Ali SM, Maiti PK. Efficient Removal of Uranyl Ions Using PAMAM Dendrimer: Simulation and Experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6794-6802. [PMID: 37126805 DOI: 10.1021/acs.langmuir.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, using atomistic molecular dynamics (MD) simulations and polymer-assisted ultrafiltration experiments, we explore the adsorption and removal of uranyl ions from aqueous solutions using poly(amidoamine) (PAMAM) dendrimers. The effects of uranyl ion concentration and the pH of the solution were examined for PAMAM dendrimers of generations 3, 4, and 5. Our simulation results show that PAMAM has a high adsorption capacity for the uranyl ions. The adsorption capacity increases with increasing concentration of uranyl ions for all 3 generations of PAMAM in agreement with experimental findings. We find that the number of uranyl ions bound to PAMAM is significantly higher in acidic solutions (pH < 3) as compared to neutral solutions (pH ∼ 7) for all uranyl ion concentrations. Additionally, we find an increase in the number of adsorbed uranyl ions to PAMAM with the increase in the dendrimer generation. This increase is due to the greater number of binding sites present for higher-generation PAMAM dendrimers. Our simulation study shows that nitrate ions form a solvation shell around uranyl ions, which allows them to bind to PAMAM binding sites, including the amide, amine, and carbonyl groups. In polymer-assisted ultrafiltration (PAUF) experiments, the removal percentage of uranyl ions by G3 PAMAM dendrimer increased from 36.3% to 42.6% as the metal ion concentration increased from 2.1 × 10-5 M to 10.5 × 10-5 M at a pH of 2. Our combined experiment and simulation study suggests that PAMAM is an effective adsorbent for removing uranyl ions from aqueous solutions.
Collapse
Affiliation(s)
- Tarun Maity
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Subhadeep Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Vasumathi Velachi
- PG & Research Department of Physics, Affiliated to Bharathidasan University, Holy Cross College, Tiruchirappalli 620002, India
| | | | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai 91-400085, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Marrakchi F, Wei M, Cao B, Yuan C, Chen H, Wang S. Copyrolysis of microalga Chlorella sp. and alkali lignin with potassium carbonate impregnation for synergistic Bisphenol A plasticizer adsorption. Int J Biol Macromol 2023; 228:808-815. [PMID: 36549623 DOI: 10.1016/j.ijbiomac.2022.12.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Composite functional materials offer promising opportunities for the development of tailored adsorbents with enhanced bioremediation potential towards toxic, carcinogenic endocrine disrupters such as Bisphenol A (BPA). Copyrolysis of microalga Chlorella sp. (CH) alkali lignin (L) with K2CO3 impregnation yielded a carbon-based composite (CHL-AC) with a micro-mesoporous structure of 0.643 cm3/g, surface area of 1414 m2/g, and BPA adsorption capacity of Qmax 316.858 mg/g. Enhanced BPA removal efficiency indicated a positive synergistic effect upon a combination of L and CH, resulting in a 73.24 % removal efficiency compared with the individual carbon components of 52.33 % for L-AC and 67.35 % for CH-AC. The kinetics and equilibrium results were described well by the pseudo second-order kinetic model and Freundlich isotherm, respectively. This paper elucidates the blending of microalgae and lignin into high-value carbon composite material, CHL-AC, with immense potential for the treatment of BPA-contaminated waters to contribute to Goal 6 (clean water and sanitation).
Collapse
Affiliation(s)
- F Marrakchi
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China; AAU Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark
| | - Manman Wei
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Bin Cao
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Hao Chen
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China.
| |
Collapse
|
9
|
Şenol ZM, Keskin ZS, Şimşek S. Synthesis and characterization of a new hybrid polymer composite (pollene@polyacrylamide) and its applicability in uranyl ions adsorption. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
10
|
Synthesis, characterization and uranium (VI) adsorption mechanism of novel adsorption material poly(tetraethylenepentamine–trimesoyl chloride). J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Adsorption properties of amine modified lignin-hydrogel composite for uranyl ions: Theoretical and experimental insights. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Zhou L, Lian J, Liu T, Chen T, Zhu W. Grafted analysis of polysaccharide based on amidoxime modification and application in seawater uranium extraction. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|