1
|
Halder K, Sabnam K, Das A, Goswami DK, Dasgupta S. Thin Film Formation of HSA in the Presence of CTAB-Capped Gold Nanorods through Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14847-14862. [PMID: 38952216 DOI: 10.1021/acs.langmuir.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Phase behavior in protein-nanoparticle systems in light of protein corona formation has been investigated. We report the formation of HSA thin films following the addition of a solid protein to a solution of CTAB-capped gold nanorods (AuNRs) via phase separation. The phase separation behavior was observed through UV-vis spectroscopy, turbidity assays, and DLS studies. UV-vis spectra for the protein-AuNR solution indicated a possible self-assembly formation by CTAB-HSA complexes and AuNR-HSA conjugates. The turbidity was found to increase linearly up to 30-50% v/v for each component. The growth phase slope is proportional to the concentration of the components, AuNRs, and HSA, with no lag phase. Dynamic light scattering (DLS) shows the formation of larger aggregates with time, implying a segregated phase of AuNR-HSA and a CTAB-HSA-AuNR network. ζ-potential values confirm surface modification, implying protein corona formation on nanorods. The thin films were also characterized using SEM, AFM, SAXS, XPS, FTIR, and TGA studies. SEM images show a smooth surface with a reduced number of pores, indicating the compactness of the deposited structure. AFM shows two different structural pattern formations with the deposition, indicating possible self-assembly of the protein-conjugated nanoparticles. FTIR studies indicate a change in the hydrogen bonding network and confirm the CTAB-HSA-AuNR complex network formation. The XPS studies indicate Au-S bond formation, along with Au-S-S-Au interactions. SAXS studies indicate the formation of aggregates (oligomers), as well as the presence of dominant attractive intermolecular interactions in the thin films.
Collapse
Affiliation(s)
- Krishna Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Kabira Sabnam
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhirup Das
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipak K Goswami
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
3
|
Lin CH, Tang X, Chen P, Luo SC. Unraveling the Adhesion Behavior of Different Cell Lines on Biomimetic PEDOT Interfaces: The Role of Surface Morphology and Antifouling Properties. ACS APPLIED BIO MATERIALS 2023; 6:5695-5707. [PMID: 37971532 DOI: 10.1021/acsabm.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The poly(3,4-ethylenedioxythiophene) (PEDOT) interface, renowned for its biocompatibility and intrinsic conductivity, holds substantial potential in biosensing and cellular modulation. Through strategic functionalization, PEDOT derivatives can be adaptable for multifaceted applications. Notably, integrating phosphorylcholine (PC) groups into PEDOT, mimicking the hydrophilic headgroups from cell membranes, confers exceptional antifouling properties on the coating. This study systematically investigated biomolecule interactions with distinct forms of PEDOT, incorporating variations in surface modifications and structure. Zwitterionic PEDOT-PC was electropolymerized on smooth and nanostructured surfaces using various feeding ratios in electrolytes to finely control the antifouling properties of the interface. Precise electropolymerization conditions governed the attainment of smooth and nanostructured filamentous surfaces. The study employed a quartz crystal microbalance with dissipation (QCM-D) to assess protein binding behavior. Bovine serum albumin (BSA), lysozyme (LYZ), cytochrome c (cyt c), and fibronectin (FN) were used to evaluate their binding affinities for PEDOT films. FN, a pivotal extracellular matrix component, was included for connecting to cell adhesion behavior. Furthermore, the cellular adhesion behaviors on PEDOT interfaces were evaluated. Three cell lines─MG-63 osteosarcoma, HeLa cervical cancer, and fibroblast NIH/3T3 were examined. The presence of PC moieties significantly altered the adhesive response, including the number of attached cells, their morphologies, and nucleus shrinkage. MG-63 cells exhibited the highest tolerance for PC moieties. A feeding ratio of PEDOT-PC exceeding 70% resulted in cell apoptosis. This study contributes to understanding biomolecule adsorption on PEDOT surfaces of diverse morphologies and degrees of the antifouling moiety. Meanwhile, it also sheds light on the responses of various cell types.
Collapse
Affiliation(s)
- Chia-Hsin Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
4
|
Marcelino T, Docampo MAR, Qian X, Ade C, Brodszkij E, Ceccato M, Foss M, Dulchavsky M, Bardwell JCA, Städler B. Surfaces Coated with Polymer Brushes Work as Carriers for Histidine Ammonia Lyase. Macromol Biosci 2023; 23:e2200528. [PMID: 36971346 DOI: 10.1002/mabi.202200528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The immobilization of enzymes on solid supports is an important challenge in biotechnology and biomedicine. In contrast to other methods, enzyme deposition in polymer brushes offers the benefit of high protein loading that preserves enzymatic activity in part due to the hydrated 3D environment that is available within the brush structure. The authors equipped planar and colloidal silica surfaces with poly(2-(diethylamino)ethyl methacrylate)-based brushes to immobilize Thermoplasma acidophilum histidine ammonia lyase, and analyzed the amount and activity of the immobilized enzyme. The poly(2-(diethylamino)ethyl methacrylate) brushes are attached to the solid silica supports either via a "grafting-to" or a "grafting-from" method. It is found that the grafting-from method results in higher amounts of deposited polymer and, consequently, higher amounts of Thermoplasma acidophilum histidine ammonia lyase. All polymer brush-modified surfaces show preserved catalytic activity of the deposited Thermoplasma acidophilum histidine ammonia lyase. However, immobilizing the enzyme in polymer brushes using the grafting-from method resulted in twice the enzymatic activity from the grafting-to approach, illustrating a successful enzyme deposition on a solid support.
Collapse
Affiliation(s)
- Thaís Marcelino
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Marcel Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Morten Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Mark Dulchavsky
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, University Avenue 1105 N., Ann Arbor, MI, 48109, USA
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, University Avenue 1105 N., Ann Arbor, MI, 48109, USA
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|