1
|
Ren J, Li Q, Zhu Z, Qiu Y, Yu F, Zhou T, Yang X, Ye K, Wang Y, Ma J, Zhao J. Highly Selective Recovery of Gold by In Situ Magnetic Field-Assisted Fe/Co-MOF@PDA/NdFeB Double Network Gel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404241. [PMID: 39206614 DOI: 10.1002/smll.202404241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
There are enormous economic benefits to conveniently increasing the selective recovery capacity of gold. Fe/Co-MOF@PDA/NdFeB double-network organogel (Fe/Co-MOF@PDA NH) is synthesized by aggregation assembly strategy. The package of PDA provides a large number of nitrogen-containing functional groups that can serve as adsorption sites for gold ions, resulting in a 21.8% increase in the ability of the material to recover gold. Fe/Co-MOF@PDA NH possesses high gold recovery capacity (1478.87 mg g-1) and excellent gold selectivity (Kd = 5.71 mL g-1). With the assistance of an in situ magnetic field, the gold recovery capacity of Fe/Co-MOF@PDA NH is increased from 1217.93 to 1478.87 mg g-1, and the recovery rate increased by 24.7%. The above excellent performance is attributed to the efficient reduction of gold by FDC/FC+, Co2+/Co3+ double reducing couple, and the optimization of the reduction reaction by the magnetic field. After the samples are calcined, high-purity gold (95.6%, 22K gold) is recovered by magnetic separation. This study proposes a forward-looking in situ energy field-assisted strategy to enhance precious metal recovery, which has a guiding role in the development of low-carbon industries.
Collapse
Affiliation(s)
- Jianran Ren
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qiang Li
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhiliang Zhu
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanling Qiu
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Tao Zhou
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xue Yang
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Kang Ye
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Yabo Wang
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Jie Ma
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jianfu Zhao
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Hu G, Wang Z, Xia C, Wang X, He H, Nie Z, Wang S, Li W. Regulating the Interface Polarity Distribution of Zr-Based MOFs by Amino Acid-Like Ligand Functionalization Enables Efficient Recovery of Gold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42976-42985. [PMID: 39091115 DOI: 10.1021/acsami.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The recovery of gold from industrial effluents is crucial for environmental conservation, sustainable resource management, and promoting the green development of gold resources. We designed a Zr-based MOF (UKM-78) by incorporating functional organic ligands that resemble amino groups, using MOFs' inherent sieving effect for ion separation. This novel material exhibited enhanced gold recovery under acidic conditions, with an adsorption capacity three times and an adsorption rate four times higher than those of nonfunctionalized UKM-77. Notably, UKM-78 efficiently captured gold solutions at concentrations as low as 1 ppm and achieved an adsorption rate exceeding 90%, owing to the electrostatic interactions and coordination between its functionalized groups and the synergistic effect of its porous structure. Despite multiple regeneration cycles, UKM-78 retains 99.4% of its adsorption capacity. X-ray photoelectron spectroscopy (XPS), kinetic studies, and thermodynamics collectively demonstrated that Au(III) binding on UKM-78 involved cooperative electrostatic interactions and chemical adsorption through coordination. This study highlights the potential of MOFs for efficient and sustainable recovery of gold from complex waste streams.
Collapse
Affiliation(s)
- Guangyuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhiwei Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Changqing Xia
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xinliang Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Hongxing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Weili Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
3
|
Xie YJ, Li TM, Shang ZT, Lu WT, Yu F. Efficient recovery of gold from solution with a thiocyanate-modified Zr-MOF: adsorption properties and DFT calculations. Dalton Trans 2024; 53:12985-12994. [PMID: 39027930 DOI: 10.1039/d4dt01250j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The design and development of new large-capacity and selective materials for extracting rare precious metals via electronic waste is practically essential. In this paper, a new efficient UiO-66-NCS has been obtained as a consequence of the modification of the classical Zr-MOF (UiO-66-NH2), and its ability to recover gold has been investigated. These batch results adequately illustrated that UiO-66-NCS exhibited good adsorption capacity (675.5 mg g-1) and exceptional selectivity. In addition, UiO-66-NCS achieved faster adsorption equilibrium times of about 120 min. Adsorption kinetics and isotherms demonstrated that the pseudo-second-order adsorption scheme and a Langmuir-type procedure were shown by the adsorption of Au(III) on UiO-66-NCS. Characterized by pH effect experiments, TEM, XRD, and XPS, the adsorption of UiO-66-NCS with Au(III) relies on coordination, which further results in reduction, and the generated Au(0) is uniformly dispersed in the MOF. The adsorbent has considerable advantages for cyclic regeneration. Finally, DFT fitting results showed that the adsorption binding energy of UiO-66-NCS with [AuCl4]- was -8.63 kcal mol-1 for the adsorption process. UiO-66-NCS is likely to be an ideal substance for gold recovery.
Collapse
Affiliation(s)
- Yu-Juan Xie
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Tang-Ming Li
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Zhao-Ting Shang
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Wang-Ting Lu
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Fan Yu
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| |
Collapse
|
4
|
Wu M, Tian H, Gao X, Cui X, Li Z, Li K, Zhao X. Diamino-functionalized metal-organic framework for selective capture of gold ions. CHEMOSPHERE 2024; 362:142686. [PMID: 38909517 DOI: 10.1016/j.chemosphere.2024.142686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Adsorptive recovery of valuable gold (Au) ions from wastes is vital but still challenged, especially regarding adsorption capacity and selectivity. A novel M - 3,5-DABA metal-organic framework (MOF) adsorbent was prepared via anchoring 3,5-diaminobenzoic acid (3,5-DABA) molecule in the MOF-808 matrix. Benefiting from the positive charge property, dense amino groups (3.2 mmol g-1) and high porosity, the adsorption capacity of M - 3,5-DABA reaches 1391.5 mg g-1 (pH = 2.5) and adsorption equilibrium is attained in 5 min. This amino-based material shows excellent selectivity towards various metal ions, evading the poor selectivity problem of classical thiol groups (e.g. for Ag+, Cu2+, Pb2+ and Hg2+ ions). In addition, the regeneration was easily achieved via using a hydrochloric acid-thiourea eluent. Experimental analysis and density functional theory (DFT) calculation show the amino group works as a reductant for Au(III) ions and meanwhile acts as an active site for adsorbing Au(III) ions together with the μ-OH group. Thus, M - 3,5-DABA can act as a potential adsorbent for Au(III) ions, and our work offers a viable strategy to construct novel MOF-based adsorbents.
Collapse
Affiliation(s)
- Mengdi Wu
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Heli Tian
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xinli Gao
- Instrumental Analysis Center, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Xinge Cui
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Zhengjie Li
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Kunjie Li
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xudong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
5
|
Li J, Lin G, Zeng B, Wang Z, Wang S, Fu L, Hu T, Zhang L. Synthetic of functionalized magnetic titanium-based metal-organic frameworks to efficiently remove Hg(Ⅱ) from wastewater. J Colloid Interface Sci 2024; 653:528-539. [PMID: 37729760 DOI: 10.1016/j.jcis.2023.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The rapid development of process technology has led to rapid daily industrial production, which also produced a large amount of waste liquid. At the same time, the existing treatment technology cannot keep up with the demand, resulting in the malicious destruction of the environment by wastewater, especially mercury-containing wastewater was very harmful. Effective means of removing mercury ions need to be found. With magnetic ferric oxide as the core and titanium-based metal-organic frameworks as the shell, a new type of magnetic adsorbent (BTA-MIL-125(Ti)@Fe3O4) was synthesized. Materials were tested by multiple characterization methods and multiple sets of experiments. At optimal pH 6, the removal rate in 100 ppm Hg(Ⅱ) was as high as 95.8%. The theoretical adsorption capacity was 615 mg/L. Isothermal experiments, kinetic experiments and thermodynamic experiments have respectively verified that the material was a kind of adsorption material with self-emission heat based on chemical action and synergistic adsorption with Hill model. By simulating the immunity of a variety of ions (Cu, Zn, Mg, Ni, Cd), the material itself also exhibited a very high affinity for Hg(Ⅱ). The results of five high-cycle stable adsorption proved the repeatable stability of the material itself. Various characterization methods have also shown that nitrogen and sulfur-containing groups chelated with Hg(Ⅱ). All of the above was enough to show that the BTA-MIL-125(Ti)@Fe3O4 was a magnetic adsorption material with excellent performance and great prospects.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Biao Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zeying Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
6
|
Li J, Lin G, Tan F, Fu L, Zeng B, Wang S, Hu T, Zhang L. Selective adsorption of mercury ion from water by a novel functionalized magnetic Ti based metal-organic framework composite. J Colloid Interface Sci 2023; 651:659-668. [PMID: 37562307 DOI: 10.1016/j.jcis.2023.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
In the context of industrialization and severe wastewater pollution, mercury ions pose a major threat due to their high toxicity. However, traditional adsorbents and common metal-organic framework (MOF) materials have limited effectiveness. This study focuses on combining magnetic materials with functionalized titanium-based MOF composite (SNN-MIL-125(Ti)@Fe3O4) to improve mercury ion adsorption. Through comprehensive characterization and analysis, the adsorption performance and mechanism of the material were studied. The optimal adsorption of the material was achieved at pH 5, exhibiting a pseudo-second-order adsorption model and the Hill theoretical capacity of 668.98 mg/g. Hill and Tempkin models confirmed the presence of chemical and physical adsorption sites on the material surface. Thermodynamic experiments showed a spontaneous endothermic process. Despite the presence of interfering ions, the material exhibited high selectivity for mercury ions. After four cycles, adsorption performance decreased by only 8%, indicating excellent reusability. Nitrogen- and sulfur-containing functional groups played a key role in mercury ion adsorption. In conclusion, SNN-MIL-125(Ti)@Fe3O4, as a magnetic MOF adsorption material, showed potential for effective remediation of mercury-contaminated wastewater. This study contributes to the development of efficient adsorption materials and enhances the understanding of their mechanism.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Fangguan Tan
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Biao Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
7
|
Wang B, Ma Y, Xu W, Tang K. A novel S,N-rich MOF for efficient recovery of Au(III): Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131051. [PMID: 36933505 DOI: 10.1016/j.jhazmat.2023.131051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
A novel S,N-rich MOF with adenine and 4,4'-thiodiphenol as organic ligands was synthesized via the one-step solvothermal method, and used for gold recovery. The pH impact, adsorption kinetics, isotherms, thermodynamics, selectivity, and reusability were investigated accordingly. The adsorption and desorption mechanism were also explored comprehensively. The electronic attraction, coordination, and in situ redox account for the Au(III) adsorption. The Au(III) adsorption is affected strongly by the pH of solutions, and best at pH of 2.57. The MOF exhibits exceptional adsorption capacity as high as 3680 mg/g at 55 °C, fast kinetics with 8 min for 9.6 mg/L Au(III), and excellent selectivity for gold ion in real e-waste leachates. The adsorption process of gold on the adsorbent is endothermic and spontaneous, and influenced visibly by temperature. The adsorption ratio still maintained 99% after seven adsorption-desorption cycles. The column adsorption experiments show that the MOF has outstanding selectivity for Au(III) with 100% of removal efficiency in a complex solution containing Au, Ni, Cu, Cd, Co, and Zn ions. A glorious adsorption with a breakthrough time of 532 mins was obtained for the breakthrough curve. This study not only provides an efficient adsorbent for gold recovery, but also guidance for designing new materials.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yingnan Ma
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| |
Collapse
|
8
|
Yuan L, Zheng N, Yang T, Li A, Yuan Y, Hua J, Li L, Zhou C. Covalent organic polymers with azido group for efficient recovery of gold from gold-bearing waste. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|