1
|
Papadopoulos E, Arrahmani BC, Beck K, Friess W. Lyso-phosphatidylcholine as an interfacial stabilizer for parenteral monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 204:114514. [PMID: 39332745 DOI: 10.1016/j.ejpb.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Therapeutic proteins suffer from physical and chemical instability in aqueous solution. Polysorbates and poloxamers are often added for protection against interfacial stress to prevent protein aggregation and particle formation. Previous studies have revealed that the hydrolysis and oxidation of polysorbates in parenteral formulations can lead to the formation of free fatty acid particles, insufficient long-term stabilization, and protein oxidation. Poloxamers, on the other hand, are considered to be less effective against protein aggregation. Here we investigated two lyso-phosphatidylcholines (LPCs) as potential alternative surfactants for protein formulations, focusing on their physicochemical behavior and their ability to protect against the formation of monoclonal antibody particles during mechanical stress. The hemolytic activity of LPC was tested in varying ratios of plasma and buffer mixtures. LPC effectively stabilized mAb formulations when shaken at concentrations several orders of magnitude below the onset of hemolysis, indicating that the potential for erythrocyte damage by LPC is non-critical. LPC formulations subjected to mechanical stress through peristaltic pumping exhibited comparable protein particle formation to those containing polysorbate 80 or poloxamer 188. Profile analysis tensiometry and dilatational rheology indicated that the stabilizing effect likely arises from the formation of a viscoelastic film at approximately the CMC. Data gathered from concentration-gradient multi-angle light scattering and isothermal titration calorimetry support this finding. Surfactant desorption was evaluated through sub-phase exchange experiments. While LPCs readily desorbed from the interface, resorption occurred rapidly enough in the bulk solution to prevent protein adsorption. Overall, LPCs behave similarly to polysorbate with respect to interfacial stabilization and show promise as a potential substitute for polysorbate in parenteral protein formulations.
Collapse
Affiliation(s)
- Eleni Papadopoulos
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13 B, 81377 Munich, Germany.
| | | | - Katharina Beck
- Albert-Ludwigs-Universität Freiburg, Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Hermann-Herder-Strasse 9, 79,104 Freiburg i. Br, Germany; Universität Augsburg, Department of Physiology, Institute of Theoretical Medicine, Universitätsstraße 2, 86159 Augsburg, Germany(1).
| | - Wolfgang Friess
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13 B, 81377 Munich, Germany.
| |
Collapse
|
2
|
Carabadjac I, Vormittag LC, Muszer T, Wuth J, Ulbrich MH, Heerklotz H. Transfer of ANS-Like Drugs from Micellar Drug Delivery Systems to Albumin Is Highly Favorable and Protected from Competition with Surfactant by "Reserved" Binding Sites. Mol Pharm 2024; 21:2198-2211. [PMID: 38625037 DOI: 10.1021/acs.molpharmaceut.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.
Collapse
Affiliation(s)
- Iulia Carabadjac
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Leonie C Vormittag
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Thomas Muszer
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Jakob Wuth
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5s 3M2, Ontario, Canada
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| |
Collapse
|
3
|
Wibel R, van Hoogevest P, Drescher S. The role of phospholipids in drug delivery formulations - Recent advances presented at the Researcher's Day 2023 Conference of the Phospholipid Research Center Heidelberg. Eur J Pharm Biopharm 2024; 197:114215. [PMID: 38350530 DOI: 10.1016/j.ejpb.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
This Focus on Meetings contribution summarizes recent advances in the research on phospholipids and their applications for drug delivery and analytical purposes that have been presented at the hybrid Researcher's Day 2023 Conference of the Phospholipid Research Center (PRC), held on July 3-5, 2023, in Bad Dürkheim, Germany. The PRC is a non-profit organization focused on expanding and sharing scientific and technological knowledge of phospholipids in pharmaceutical and other applications. This is accomplished by, e.g., funding doctoral and postdoctoral research projects. The progress made with these projects is presented at the Researcher's Day Conference every two years. Four main topics were presented and discussed in various lectures: (1) formulation of phospholipid-based nanocarriers, (2) therapeutic applications of phospholipids and phospholipid-based nanocarriers, (3) phospholipids as excipients in oral, dermal, and parenteral dosage forms, and (4) interactions of phospholipids and phospholipid-based vesicles in biological environment and their use as analytical platforms.
Collapse
Affiliation(s)
- Richard Wibel
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Peter van Hoogevest
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| |
Collapse
|