1
|
Stratton RL, Pokhrel B, Smith B, Adeyemi A, Dhakal A, Shen H. DNA Catalysis: Design, Function, and Optimization. Molecules 2024; 29:5011. [PMID: 39519652 PMCID: PMC11547689 DOI: 10.3390/molecules29215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Catalytic DNA has gained significant attention in recent decades as a highly efficient and tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization. Despite being composed of just four monomers, DNA's complex conformational intricacies enable a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving the way for rational structural optimization. This review will summarize the latest studies on the performance and optimization of traditional DNAzymes and provide an in-depth analysis of DNAzyme hybrid catalysts and their unique and promising properties.
Collapse
Affiliation(s)
- Rebecca L. Stratton
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bishal Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bryce Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Adeola Adeyemi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Ananta Dhakal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Pokhrel P, Karna D, Jonchhe S, Mao H. Catalytic Relaxation of Kinetically Trapped Intermediates by DNA Chaperones. J Am Chem Soc 2024; 146:13046-13054. [PMID: 38710657 PMCID: PMC11135164 DOI: 10.1021/jacs.3c14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Common in biomacromolecules, kinetically trapped misfolded intermediates are often detrimental to the structures, properties, or functions of proteins or nucleic acids. Nature employs chaperone proteins but not nucleic acids to escort intermediates to correct conformations. Herein, we constructed a Jablonski-like diagram of a mechanochemical cycle in which individual DNA hairpins were mechanically unfolded to high-energy states, misfolded into kinetically trapped states, and catalytically relaxed back to ground-state hairpins by a DNA chaperone. The capacity of catalytic relaxation was demonstrated in a 1D DNA hairpin array mimicking nanoassembled materials. At ≥1 μM, the diffusive (or self-walking) DNA chaperone converted the entire array of misfolded intermediates to correct conformation in less than 15 s, which is essential to rapidly prepare homogeneous nanoassemblies. Such an efficient self-walking amplification increases the signal-to-noise ratio, facilitating catalytic relaxation to recognize a 1 fM DNA chaperone in 10 min, a detection limit comparable to the best biosensing strategies.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
- Advanced Materials and Liquid Crystals Institute, Kent State University, Kent, Ohio 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Zuo L, Ren K, Guo X, Pokhrel P, Pokhrel B, Hossain MA, Chen ZX, Mao H, Shen H. Amalgamation of DNAzymes and Nanozymes in a Coronazyme. J Am Chem Soc 2023; 145:5750-5758. [PMID: 36795472 PMCID: PMC10325850 DOI: 10.1021/jacs.2c12367] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Artificial enzymes such as nanozymes and DNAzymes are economical and stable alternatives to natural enzymes. By coating Au nanoparticles (AuNPs) with a DNA corona (AuNP@DNA), we amalgamated nanozymes and DNAzymes into a new artificial enzyme with catalytic efficiency 5 times higher than AuNP nanozymes, 10 times higher than other nanozymes, and significantly greater than most of the DNAzymes on the same oxidation reaction. The AuNP@DNA demonstrates excellent specificity as its reactivity on a reduction reaction does not change with respect to pristine AuNP. Single-molecule fluorescence and force spectroscopies and density functional theory (DFT) simulations indicate a long-range oxidation reaction initiated by radical production on the AuNP surface, followed by radical transport to the DNA corona, where the binding and turnover of substrates take place. The AuNP@DNA is named coronazyme because of its natural enzyme mimicking capability through the well-orchestrated structures and synergetic functions. By incorporating different nanocores and corona materials beyond DNAs, we anticipate that the coronazymes represent generic enzyme mimics to carry out versatile reactions in harsh environments.
Collapse
Affiliation(s)
- Li Zuo
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Kehao Ren
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Xianming Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Bishal Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | | | - Zhao-Xu Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|