1
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
2
|
Sahoo D, Tyagi S, Agarwal S, Shakya J, Ali N, Yoo WJ, Kaviraj B. Cost-Effective and Highly Efficient Manganese-Doped MoS 2 Nanosheets as Visible-Light-Driven Photocatalysts for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7109-7121. [PMID: 37156095 DOI: 10.1021/acs.langmuir.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One of the main objectives in wastewater treatment and sustainable energy production is to find photocatalysts that are favorably efficient and cost-effective. Transition-metal dichalcogenides (TMDs) are promising photocatalytic materials; out of all, MoS2 is extensively studied as a cocatalyst in the TMD library due to its exceptional photocatalytic activity for the degradation of organic dyes due to its distinctive morphology, adequate optical absorption, and rich active sites. However, sulfur ions on the active edges facilitate the catalytic activity of MoS2. On the basal planes, sulfur ions are catalytically inactive. Injecting metal atoms into the MoS2 lattice is a handy approach for triggering the surface of the basal planes and enriching catalytically active sites. Effective band gap engineering, sulfur edges, and improved optical absorption of Mn-doped MoS2 nanostructures are promising for improving their charge separation and photostimulated dye degradation activity. The percentage of dye degradation of MB under visible-light irradiations was found to be 89.87 and 100% for pristine and 20% Mn-doped MoS2 in 150 and 90 min, respectively. However, the degradation of MB dye was increased when the doping concentration in MoS2 increased from 5 to 20%. The kinetic study showed that the first-order kinetic model described the photodegradation mechanism well. After four cycles, the 20% Mn-doped MoS2 catalysts maintained comparable catalytic efficacy, indicating its excellent stability. The results demonstrated that the Mn-doped MoS2 nanostructures exhibit exceptional visible-light-driven photocatalytic activity and could perform well as a catalyst for industrial wastewater treatment.
Collapse
Affiliation(s)
- Dhirendra Sahoo
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Shivam Tyagi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Srishti Agarwal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Jyoti Shakya
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden
| | - Nasir Ali
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Bhaskar Kaviraj
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Zhang Y, Du Y, Yuan Q, Hang C, Zhang X, Hu B, Jin Q, Chen M. Unraveling the Strong Fluorescence Enhancement of HPBI Molecules by ZIF-8 Colloidal Suspensions via Adsorption Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3312-3319. [PMID: 36802635 DOI: 10.1021/acs.langmuir.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enhancing the fluorescence of organic dye by colloidal particles is one of the most promising routes to optimize fluorescence detection. However, in addition to metallic particles, which serve as the most frequently used particles and have been found to employ the plasmonic resonance to provide strong fluorescence enhancement, neither new types of colloidal particles nor new fluorescence mechanisms have been intensively explored in recent years. In this work, strongly enhanced fluorescence was observed when 2-(2-hydroxyphenyl)-1H-benzimidazole (HPBI) molecules were simply mixed with zeolitic imidazolate framework-8 (ZIF-8) colloidal suspensions. Moreover, the enhancement factor ΔI = IHPBI+ZIF-8/IHPBI does not increase accordingly with the increasing amount of HPBI. To find out how the strong fluorescence was triggered and affected by the amount of HPBI, multiple techniques were applied to analyze the adsorption behavior. By combining analytical ultracentrifugation with first-principles calculations, we proposed that HPBI molecules were adsorbed onto the surface of ZIF-8 particles coordinatively and electrostatically, depending on the concentration of HPBI molecules. The coordinative adsorption would result in a new kind of fluorescence emitter. The new fluorescence emitters tend to distribute on the outer surface of ZIF-8 particles periodically. The distance between each fluorescence emitter is fixed and much smaller than the wavelength of the excitation light. Thus, it can be concluded that collective spontaneous emission might be triggered.
Collapse
Affiliation(s)
- Yuyi Zhang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yuting Du
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Qinghong Yuan
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Chao Hang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xiaolei Zhang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Qingyuan Jin
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Mengdi Chen
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|