1
|
Zhang T, Zu Y, Zeng B, Gan R, Liu P, Li X, Han F, Qian Y, Zhao L, Feng A, Wu Z. Anion regulation for surface passivation enables ultrahigh-stability perovskite nanocrystals. J Chem Phys 2024; 161:164710. [PMID: 39450731 DOI: 10.1063/5.0234793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
All-inorganic perovskite CsPbBr3 nanocrystals (NCs) display high photoluminescence quantum yield and narrow emission, which show great potential application in optoelectronic devices. However, the poor environment stability of NCs will hinder their practical application. Herein, a series of ionic liquids with different anions (BF4-, Br-, and NO3-) were used as a sole capping ligand to synthesize NCs. Among the three samples, 1-hexadecyl-3-methylimidazolium tetrafluoroborate ([C16MIM]BF4) capped NCs have the highest stability in light, thermal, and water, possibly attributing to the in situ passivation of bromine vacancy via pseudohalogen BF4- and tight binding of ionic liquid ligands and lead atoms. In addition, green-emission [C16MIM]BF4 NCs were used to assemble a white light-emitting diode device, and it possessed a wide National Television System Committee color gamut of 124.5% and a stable emission peak at high driving currents of 380 mA. This work paves the way for resurfacing perovskite NCs with ultrahigh stability, thereby driving the perovskite NC display industry closer to real-world application.
Collapse
Affiliation(s)
- Tong Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Yanqing Zu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Binglin Zeng
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Run Gan
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Peitao Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Xiaodong Li
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Fengbo Han
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Yu Qian
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Lei Zhao
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Ailing Feng
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, People's Republic of China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Deng C, Huang Q, Fu Z, Lu Y. Ligand Engineering of Inorganic Lead Halide Perovskite Quantum Dots toward High and Stable Photoluminescence. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1201. [PMID: 39057878 PMCID: PMC11280295 DOI: 10.3390/nano14141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ligand engineering of inorganic lead halide perovskite quantum dots (PQDs) is an indispensable strategy to boost their photoluminescence stability, which is pivotal for optoelectronics applications. CsPbX3 (X = Cl, Br, I) PQDs exhibit exceptional optical properties, including high color purity and tunable bandgaps. Despite their promising characteristics, environmental sensitivity poses a challenge to their stability. This article reviews the solution-based synthesis methods with ligand engineering. It introduces the impact of factors like humidity, temperature, and light exposure on PQD's instability, as well as in situ and post-synthesis ligand engineering strategies. The use of various ligands, including X- and L-type ligands, is reviewed for their effectiveness in enhancing stability and luminescence performance. Finally, the significant potential of ligand engineering for the broader application of PQDs in optoelectronic devices is also discussed.
Collapse
Affiliation(s)
- Changbo Deng
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiuping Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhengping Fu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yalin Lu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Wang CW, Oyeka EE, Altman AB, Son DH. Effects of Pressure on Exciton Absorption and Emission in Strongly Quantum-Confined CsPbBr 3 Quantum Dots and Nanoplatelets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2062-2069. [PMID: 38352853 PMCID: PMC10860125 DOI: 10.1021/acs.jpcc.3c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Soft lattices of metal halide perovskite (MHP) nanocrystals (NCs) are considered responsible for many of their optical properties associated with excitons, which are often distinct from other semiconductor NCs. Earlier studies of MHP NCs upon compression revealed how structural changes and the resulting changes in the optical properties such as the bandgap can be induced at relatively low pressures. However, the pressure response of the exciton transition itself in MHP NCs remains relatively poorly understood due to limitations inherent to studying weakly or nonconfined NCs in which exciton absorption peaks are not well-separated from the continuum interband transition. Here, we investigated the pressure response of the absorbing and emitting transitions of excitons using strongly quantum-confined CsPbBr3 quantum dots (QDs) and nanoplatelets (NPLs), which both exhibit well-defined exciton absorption peaks. Notably, the reversible vanishing and recovery of the exciton absorption accompanied by reversible quenching and recovery of the emission were observed in both QDs and NPLs, resulting from the reversible pressure modulation of the exciton oscillator strength. Furthermore, CsPbBr3 NPLs exhibited irreversible pressure-induced creation of trap states at low pressures (∼0.1 GPa) responsible for trapped exciton emission that developed on the time scale of ∼10 min, while the reversible pressure response of the absorbing exciton transition was maintained. These findings shed light on the diverse effects the application of force has on the absorbing and emitting exciton transitions in MHP NCs, which are important for their application as excitonic light emitters in high-pressure environments.
Collapse
Affiliation(s)
- Chih-Wei Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ebube E. Oyeka
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Alison B. Altman
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
- Center
for Nanomedicine, Institute for Basic Science and Graduate Program
of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|