1
|
Zhang T, Wang M, Han Y, Liu J, Zhang Z, Wang M, Liu P, Gao S. Particle sizes crucially affected the release of additives from tire wear particles during UV irradiation and mechanical abrasion. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134106. [PMID: 38552399 DOI: 10.1016/j.jhazmat.2024.134106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
In the environment, tire wear particles (TWPs) could release various additives to induce potential risk, while the effects of particle size on the additive release behavior and ecological risk from TWPs remain unknown. This study investigated the effects and mechanisms of particle sizes (>2 mm, 0.71-1 mm, and <0.1 mm) on the release behavior of TWPs additives under mechanical abrasion and UV irradiation in water. Compared to mechanical abrasion, UV irradiation significantly increased the level of additives released from TWPs. Especially, the additive releasing characteristics were critically affected by the particle sizes of TWPs, manifested as the higher release in the smaller-size ones. After 60 d of UV irradiation, the concentration of antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) reached 10.79 mg/L in the leachate of small-sized TWPs, 2.78 and 5.36 times higher than that of medium-sized and large-sized TWPs. The leachate of the small-sized TWPs also showed higher cytotoxicity. •OH and O2•- were identified as the main reactive oxygen species (ROS), which exhibited higher concentrations and dramatic attack on small-sized TWPs to cause pronounced fragmentation and oxidation, finally inducing the higher release of additives. This paper sheds light on the crucial effects and mechanism of particle sizes in the release behavior of TWPs additives, provides useful information to assess the ecological risk of TWPs.
Collapse
Affiliation(s)
- Taishuo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mingjun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yingxuan Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingxuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Shekofteh Narm T, Hamidinezhad H, Sabouri Z, Darroudi M. Green synthesis of silver doped zinc oxide/magnesium oxide nanocomposite for waste water treatment and examination of their cytotoxicity properties. Heliyon 2024; 10:e30374. [PMID: 38726184 PMCID: PMC11079111 DOI: 10.1016/j.heliyon.2024.e30374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
This research attempted to prepare silver-doped zinc oxide/magnesium oxide nanocomposite (Ag-doped ZnO/MgO-NCP) using Mentha pulegium plant extract. The synthesized NCP was investigated by X-ray diffraction analysis (XRD), Fourier Transform Infrared (FT-IR), Field Emission Scanning Electron Microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Mapping, and UV-Visible analyses. The XRD data displayed cubic crystal structures for silver & magnesium oxide and a hexagonal framework for zinc oxide. Also, FESEM and PSA images of NCP pointed out, that the average size of the spherical morphology is about 10-16 nm, while the analysis of EDX confirmed the attendance of Zn, Mg, Ag, and O elements. Under UVA light, we tested the photocatalytic activity of NCP to the degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes in various temperatures (400, 500, and 600 °C). The results of the photocatalytic test displayed that the degradation percentage of MB dye in pH = 9, nanocomposite amount ∼30 mg, and dye concentration ∼1 × 10 -5 M was about 98 %. We also evaluated the cytotoxicity of nanocomposite on cancer CT-26 cell line through the MTT method and obtained an IC50 value of 250 μg/mL.
Collapse
Affiliation(s)
- Toktam Shekofteh Narm
- Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Habib Hamidinezhad
- Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Nanobiotechnology Research Group, University of Mazandaran, Babolsar, Iran
| | - Zahra Sabouri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Wang K, Yang H, Yan R, Chen C, Wu C, Chen W, He Z, Huang G, Chang L. Ni-CoSe 2 heterojunction coated by N-doped carbon for modified separators of high-performance Li-sulfur batteries. RSC Adv 2024; 14:15358-15364. [PMID: 38741959 PMCID: PMC11089644 DOI: 10.1039/d4ra01660b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Functional separators modified by transition metal compounds have been proven to be effective in suppressing the shuttle effect of polysulfides and accelerating sluggish electrode dynamics in lithium-sulfur batteries (LSBs). However, the behaviors of heterojunctions composed of transition metals and their compounds in LSBs are still rarely studied. Herein, we report a novel Ni-CoSe2 heterostructure coated with nitrogen-doped carbon. Compared to homogeneous cobalt diselenide, it exhibits much stronger adsorption and catalytic conversion abilities towards polysulfides. With the modified separators, the lithium-sulfur batteries exhibit significantly improved capacity retention and reduced polarization during cycling.
Collapse
Affiliation(s)
- Kai Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
| | - Haiqin Yang
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
| | - Ruiqiang Yan
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
| | - Cairong Chen
- Taizhou Prefectural Center for Disease Control and Prevention Taizhou 318000 China
| | - Chenglin Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
- Taizhou Biomedical and Chemistry Industry Institute Jiaojiang 318000 China
| | - Wei Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
| | - Ling Chang
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 China
- Taizhou Biomedical and Chemistry Industry Institute Jiaojiang 318000 China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
4
|
Xiang X, Zhang M, Huang Q, Mao Y, Jia J, Zeng X, Dong Y, Liao J, Chen X, Yao X, Zheng Q, Chen W. Construction of S-scheme CuInS 2/ZnIn 2S 4 heterostructures for enhanced photocatalytic activity towards Cr(VI) removal and antibiotics degradation. CHEMOSPHERE 2024; 352:141351. [PMID: 38340997 DOI: 10.1016/j.chemosphere.2024.141351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The efficient and ecofriendly removal of pharmaceutical antibiotics and heavy metal Cr(VI) from water sources is a crucial challenge in current environmental management. Photocatalysis presents a viable environmentally friendly solution for eliminating organic contaminants and heavy-metal ions. In this study, a novel S-scheme CuInS2/ZnIn2S4 (CIS/ZIS) heterojunction was developed using a one-pot solvothermal method. The optimized CIS/ZIS heterojunction exhibited considerably improved photocatalytic activity for the removal of antibiotics and Cr(VI), achieving over 90% removal for both tetracycline hydrochloride (TC) (20 mg/L) and Cr(VI) (20 mg/L) under visible light irradiation. The study also delved into the effect of coexisting inorganic anions and assessed the cyclic stability of the composite photocatalysts. This enhancement mechanism can be delineated into three key elements. First, the incorporation of the narrow-gap semiconductor CuInS2 effectively augmented the photoabsorption capacity. Second, the inclusion of ZnIn2S4 caused an increase in surface active sites. Most importantly, the internal electric field at the interface between CuInS2 and ZnIn2S4 expedited the separation of photogenerated carriers. Furthermore, the results revealed that superoxide radical and photogenerated holes are the primary active substance responsible for TC removal, while photogenerated electrons play a central role in the photoreduction of Cr(VI). To gain insights into the transport pathways of photogenerated carriers, we conducted experiments with nitrotetrazolium blue chloride (NBT) and photodeposited gold. This study offers an innovative approach to enhancing the photocatalytic performance of ternary In-based materials by constructing S-scheme heterojunctions.
Collapse
Affiliation(s)
- Xiaokang Xiang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Min Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China; East China University of Science and Technology Changshu Research Institute Co., Suzhou, Jiangsu Province, 215000, China.
| | - Qitao Huang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Yue Mao
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junhao Jia
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Xiantao Zeng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Yunyuan Dong
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Jianming Liao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Xiaobin Chen
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Xiaxi Yao
- East China University of Science and Technology Changshu Research Institute Co., Suzhou, Jiangsu Province, 215000, China
| | - Qifu Zheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Wei Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang Province, China.
| |
Collapse
|