1
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
3
|
Liu R, Shi Z, Sun J, Li Z. Enzyme responsive supramolecular hydrogels assembled from nonionic peptide amphiphiles. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9282-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.12.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Xie Y, Zhao J, Huang R, Qi W, Wang Y, Su R, He Z. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. NANOSCALE RESEARCH LETTERS 2016; 11:184. [PMID: 27067732 PMCID: PMC4828348 DOI: 10.1186/s11671-016-1415-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 05/04/2023]
Abstract
We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate.
Collapse
Affiliation(s)
- Yanyan Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Renliang Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
6
|
Wan Y, Wang Z, Sun J, Li Z. Extremely Stable Supramolecular Hydrogels Assembled from Nonionic Peptide Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7512-7518. [PMID: 27399915 DOI: 10.1021/acs.langmuir.6b00727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptide hydrogels with high stability in different media are of great interest in biomedical applications. In this paper, we report an easy, fast, and scalable method for preparing a family of nonionic peptide amphiphiles (PAs) obtained by direct aminolysis of alkyl-oilgo(γ-benzyl-l-glutamate) samples, which were synthesized via the alkyl amine-initiated sequence ring-opening reaction of α-amino acid N-carboxyanhydrides. One great advantage of this method is that vast chemical diversity and large-scale yields can be achieved easily using commercially available hydramines. These PA samples can readily form a clear hydrogel without any external aid and show exceptionally enhanced gelation properties with a critical gelation concentration as low as 0.05 wt %. The hydrogels are highly stable against extreme pH values of 1 and 14 and a high salt concentration of 200 mM NaCl. These properties combined with the shear-thinning properties make these PA hydrogels ideal candidates for the new generation of injectable scaffolds.
Collapse
Affiliation(s)
- Yaoming Wan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Zuoning Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jing Sun
- School of Polymer Science and Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Zhibo Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- School of Polymer Science and Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| |
Collapse
|
7
|
Hilderbrand AM, Ovadia EM, Rehmann MS, Kharkar PM, Guo C, Kloxin AM. Biomaterials for 4D stem cell culture. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:212-224. [PMID: 28717344 PMCID: PMC5510611 DOI: 10.1016/j.cossms.2016.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cells reside in complex three-dimensional (3D) environments within the body that change with time, promoting various cellular functions and processes such as migration and differentiation. These complex changes in the surrounding environment dictate cell fate yet, until recently, have been challenging to mimic within cell culture systems. Hydrogel-based biomaterials are well suited to mimic aspects of these in vivo environments, owing to their high water content, soft tissue-like elasticity, and often-tunable biochemical content. Further, hydrogels can be engineered to achieve changes in matrix properties over time to better mimic dynamic native microenvironments for probing and directing stem cell function and fate. This review will focus on techniques to form hydrogel-based biomaterials and modify their properties in time during cell culture using select addition reactions, cleavage reactions, or non-covalent interactions. Recent applications of these techniques for the culture of stem cells in four dimensions (i.e., in three dimensions with changes over time) also will be discussed for studying essential stem cell processes.
Collapse
Affiliation(s)
- Amber M. Hilderbrand
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Elisa M. Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Matthew S. Rehmann
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Prathamesh M. Kharkar
- Department of Materials Science and Engineering, University of Delaware, Newark DE 19716, USA
| | - Chen Guo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark DE 19716, USA
| |
Collapse
|
8
|
Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O'Brien TD. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium. Stem Cells Transl Med 2016; 5:970-9. [PMID: 27177577 DOI: 10.5966/sctm.2015-0305] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. SIGNIFICANCE Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable.
Collapse
Affiliation(s)
- Beth A Lindborg
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Bioactive Regenerative Therapeutics, Inc., Two Harbors, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - John H Brekke
- Bioactive Regenerative Therapeutics, Inc., Two Harbors, Minnesota, USA
| | - Amanda L Vegoe
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Connor B Ulrich
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kerri T Haider
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Sandhya Subramaniam
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott L Venhuizen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Cindy R Eide
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul J Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Wang
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carolyn M Scott
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan A Keirstead
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
9
|
A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering. Macromol Biosci 2016; 16:1212-26. [DOI: 10.1002/mabi.201600013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/09/2016] [Indexed: 11/07/2022]
|
10
|
Magin CM, Alge DL, Anseth KS. Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater 2016; 11:022001. [DOI: 10.1088/1748-6041/11/2/022001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|