1
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
2
|
Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization. Sci Rep 2022; 12:12061. [PMID: 35835808 PMCID: PMC9283474 DOI: 10.1038/s41598-022-16065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 01/15/2023] Open
Abstract
Luminescence-encoded microbeads are important tools for many applications in the life and material sciences that utilize luminescence detection as well as multiplexing and barcoding strategies. The preparation of such beads often involves the staining of premanufactured beads with molecular luminophores using simple swelling procedures or surface functionalization with layer-by-layer (LbL) techniques. Alternatively, these luminophores are sterically incorporated during the polymerization reaction yielding the polymer beads. The favorable optical properties of semiconductor quantum dots (QDs), which present broadly excitable, size-tunable, narrow emission bands and low photobleaching sensitivity, triggered the preparation of beads stained with QDs. However, the colloidal nature and the surface chemistry of these QDs, which largely controls their luminescence properties, introduce new challenges to bead encoding that have been barely systematically assessed. To establish a straightforward approach for the bead encoding with QDs with minimized loss in luminescence, we systematically assessed the incorporation of oleic acid/oleylamine-stabilized CdSe/CdS-core/shell-QDs into 0.5-2.5 µm-sized polystyrene (PS) microspheres by a simple dispersion polymerization synthesis that was first optimized with the organic dye Nile Red. Parameters addressed for the preparation of luminophore-encoded beads include the use of a polymer-compatible ligand such as benzyldimethyloctadecylammonium chloride (OBDAC) for the QDs, and crosslinking to prevent luminophore leakage. The physico-chemical and optical properties of the resulting beads were investigated with electron microscopy, dynamic light scattering, optical spectroscopy, and fluorescence microscopy. Particle size distribution, fluorescence quantum yield of the encapsulated QDs, and QD leaking stability were used as measures for bead quality. The derived optimized bead encoding procedure enables the reproducible preparation of bright PS microbeads encoded with organic dyes as well as with CdSe/CdS-QDs. Although these beads show a reduced photoluminescence quantum yield compared to the initially very strongly luminescent QDs, with values of about 35%, their photoluminescence quantum yield is nevertheless still moderate.
Collapse
|
3
|
Xiong N, Wang A, Xie T, Hu T, Chen Q, Zhao Q, Li G. Oil-Triggered and Template-Confined Dewetting for Facile and Low-Loss Sample Digitization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20813-20822. [PMID: 35485956 DOI: 10.1021/acsami.2c04728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper proposes a simple and robust method for spontaneously digitizing aqueous samples into a high-density microwell array. The method is based on an oil-triggered template-confined dewetting phenomenon. To realize the dewetting-induced sample digitization, an aqueous sample is first infused into a networked microwell array (NMA) through a pre-degassing-based self-pumping mechanism, and an immiscible oil phase is then applied over the surface of NMA chip to induce the templated dewetting. Due to periodic interfacial tension heterogeneity, such dewetting ruptures the sample at the thinnest parts (i.e., connection channels) and spontaneously splits the sample into droplets in individual microwells. Without requiring any complex pumping or valving systems, this method can discretize a sample into tens of thousands of addressable droplets in a matter of minutes with nearly 98% usage. To demonstrate the utility and universality of this self-digitization method, we exploited it to discretize samples into 40 233 wells for a digital PCR assay, the digital quantification of bacteria, the self-assembly of spherical colloidal photonic crystals, and the spherical crystallization of drugs. We believe this facile technique will provide a substantial benefit to many compartmentalized assays or syntheses where it is necessary to partition samples into a large number of small individual volumes.
Collapse
Affiliation(s)
- Nankun Xiong
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Anyan Wang
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tengbao Xie
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Tianbao Hu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Qiang Chen
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiang Zhao
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| |
Collapse
|
4
|
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022; 14:pharmaceutics14020434. [PMID: 35214166 PMCID: PMC8880124 DOI: 10.3390/pharmaceutics14020434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional drug administration usually faces the problems of degradation and rapid excretion when crossing many biological barriers, leading to only a small amount of drugs arriving at pathological sites. Therapeutic drugs delivered by drug delivery systems to the target sites in a controlled manner greatly enhance drug efficacy, bioavailability, and pharmacokinetics with minimal side effects. Due to the distinct advantages of microfluidic techniques, microfluidic setups provide a powerful tool for controlled synthesis of drug delivery systems, precisely controlled drug release, and real-time observation of drug delivery to the desired location at the desired rate. In this review, we present an overview of recent advances in the preparation of nano drug delivery systems and carrier-free drug delivery microfluidic systems, as well as the construction of in vitro models on-a-chip for drug efficiency evaluation of drug delivery systems. We firstly introduce the synthesis of nano drug delivery systems, including liposomes, polymers, and inorganic compounds, followed by detailed descriptions of the carrier-free drug delivery system, including micro-reservoir and microneedle drug delivery systems. Finally, we discuss in vitro models developed on microfluidic devices for the evaluation of drug delivery systems, such as the blood–brain barrier model, vascular model, small intestine model, and so on. The opportunities and challenges of the applications of microfluidic platforms in drug delivery systems, as well as their clinical applications, are also discussed.
Collapse
|
5
|
Synthesis of photoluminescent m-phenylenediamine-Rhodamine B copolymer dots: selective ultrahigh photocatalytic performance for catalytic reduction of nitro-compound. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Cui Y, Li Y, Wang K, Deng J, Luo G. Determination of Dynamic Interfacial Tension during the Generation of Tiny Droplets in the Liquid-Liquid Jetting Flow Regime. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13633-13641. [PMID: 33147955 DOI: 10.1021/acs.langmuir.0c02459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid-liquid dispersion coupled with droplet formation and mass transfer of surfactants is one of the most typical phenomena in many chemical processes. As in every aspect of this process, the interfacial tension variation caused by the unsaturated adsorption of surfactants on the droplet surface plays an important role. This article focuses on microdroplet formation and the dynamic interfacial behavior of surfactants in the jetting regime. In a capillary embedded step T-junction device, controllable preparation of monodisperse droplets is achieved, and a correlation for predicting droplet sizes is established. A method for measuring the dynamic interfacial tension is provided. Mass transfer coefficients are then calculated for Tween 20 during the droplet formation process by a semiempirical correlation. The results indicate that dynamic interfacial tensions are lower than those obtained when the surfactant is adsorbed to equilibrium. Based on the tip-streaming phenomenon, mass transfer coefficients for Tween 20 can reach up to ∼10-3 m/s, higher than those obtained in coaxial microfluidic devices. All the preliminary results shed light on the nature of droplet formation and will be of significance for application in industrial apparatuses.
Collapse
Affiliation(s)
- Yongjin Cui
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yankai Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian Deng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Liu L, Xiang N, Ni Z. Droplet‐based microreactor for the production of micro/nano‐materials. Electrophoresis 2019; 41:833-851. [DOI: 10.1002/elps.201900380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Linbo Liu
- School of Mechanical Engineeringand Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSoutheast University Nanjing P. R. China
| | - Nan Xiang
- School of Mechanical Engineeringand Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSoutheast University Nanjing P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineeringand Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSoutheast University Nanjing P. R. China
| |
Collapse
|
8
|
Sontti SG, Atta A. Numerical Insights on Controlled Droplet Formation in a Microfluidic Flow-Focusing Device. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Somasekhara Goud Sontti
- Multiscale Computational Fluid Dynamics (mCFD) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Arnab Atta
- Multiscale Computational Fluid Dynamics (mCFD) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
9
|
Liu EY, Jung S, Weitz DA, Yi H, Choi CH. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. LAB ON A CHIP 2018; 18:323-334. [PMID: 29242870 DOI: 10.1039/c7lc01088e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemically functional hydrogel microspheres hold significant potential in a range of applications including biosensing, drug delivery, and tissue engineering due to their high degree of flexibility in imparting a range of functions. In this work, we present a simple, efficient, and high-throughput capillary microfluidic approach for controlled fabrication of monodisperse and chemically functional hydrogel microspheres via formation of double emulsion drops with an ultra-thin oil shell as a sacrificial template. This method utilizes spontaneous dewetting of the oil phase upon polymerization and transfer into aqueous solution, resulting in poly(ethylene glycol) (PEG)-based microspheres containing primary amines (chitosan, CS) or carboxylates (acrylic acid, AA) for chemical functionality. Simple fluorescent labelling of the as-prepared microspheres shows the presence of abundant, uniformly distributed and readily tunable functional groups throughout the microspheres. Furthermore, we show the utility of chitosan's primary amine as an efficient conjugation handle at physiological pH due to its low pKa by direct comparison with other primary amines. We also report the utility of these microspheres in biomolecular conjugation using model fluorescent proteins, R-phycoerythrin (R-PE) and green fluorescent protein (GFPuv), via tetrazine-trans-cyclooctene (Tz-TCO) ligation for CS-PEG microspheres and carbodiimide chemistry for AA-PEG microspheres, respectively. The results show rapid coupling of R-PE with the microspheres' functional groups with minimal non-specific adsorption. In-depth protein conjugation kinetics studies with our microspheres highlight the differences in reaction and diffusion of R-PE with CS-PEG and AA-PEG microspheres. Finally, we demonstrate orthogonal one-pot protein conjugation of R-PE and GFPuv with CS-PEG and AA-PEG microspheres via simple size-based encoding. Combined, these results represent a significant advancement in the rapid and reliable fabrication of monodisperse and chemically functional hydrogel microspheres with tunable properties.
Collapse
Affiliation(s)
- Eric Y Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | | | |
Collapse
|
10
|
Yang YJ, Tang B, Zhang L, Wang C, Ma HT, Pang DW, Zhang ZL. On-demand one-step synthesis of small-sized fluorescent–magnetic bifunctional microparticles on a droplet-splitting chip. J Mater Chem B 2018; 6:961-965. [DOI: 10.1039/c7tb02122d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generation of small-sized multifunctional microparticles: multifunctional microparticles were easily produced based on droplet splitting and photopolymerization in a single step.
Collapse
Affiliation(s)
- Yu-Jun Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Cheng Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Hao-Tian Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| |
Collapse
|
11
|
Liu Y, Jiang X. Why microfluidics? Merits and trends in chemical synthesis. LAB ON A CHIP 2017; 17:3960-3978. [PMID: 28913530 DOI: 10.1039/c7lc00627f] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic limitations of conventional batch synthesis have hindered its applications in both solving classical problems and exploiting new frontiers. Microfluidic technology offers a new platform for chemical synthesis toward either molecules or materials, which has promoted the progress of diverse fields such as organic chemistry, materials science, and biomedicine. In this review, we focus on the improved performance of microreactors in handling various situations, and outline the trend of microfluidic synthesis (microsynthesis, μSyn) from simple microreactors to integrated microsystems. Examples of synthesizing both chemical compounds and micro/nanomaterials show the flexible applications of this approach. We aim to provide strategic guidance for the rational design, fabrication, and integration of microdevices for synthetic use. We critically evaluate the existing challenges and future opportunities associated with this burgeoning field.
Collapse
Affiliation(s)
- Yong Liu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | |
Collapse
|
12
|
Yu X, Xia Y, Tang Y, Zhang W, Yeh Y, Lu H, Zheng S. A Nanostructured Microfluidic Immunoassay Platform for Highly Sensitive Infectious Pathogen Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700425. [PMID: 28636164 PMCID: PMC7169616 DOI: 10.1002/smll.201700425] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/18/2017] [Indexed: 05/18/2023]
Abstract
Rapid and simultaneous detection of multiple potential pathogens by portable devices can facilitate early diagnosis of infectious diseases, and allow for rapid and effective implementation of disease prevention and treatment measures. The development of a ZnO nanorod integrated microdevice as a multiplex immunofluorescence platform for highly sensitive and selective detection of avian influenza virus (AIV) is described. The 3D morphology and unique optical property of the ZnO nanorods boost the detection limit of the H5N2 AIV to as low as 3.6 × 103 EID50 mL-1 (EID50 : 50% embryo infectious dose), which is ≈22 times more sensitive than conventional enzyme-linked immunosorbent assay. The entire virus capture and detection process could be completed within 1.5 h with excellent selectivity. Moreover, this microfluidic biosensor is capable of detecting multiple viruses simultaneously by spatial encoding of capture antibodies. One prominent feature of the device is that the captured H5N2 AIV can be released by simply dissolving ZnO nanorods under slightly acidic environment for subsequent off-chip analyses. As a whole, this platform provides a powerful tool for rapid detection of multiple pathogens, which may extent to the other fields for low-cost and convenient biomarker detection.
Collapse
Affiliation(s)
- Xu Yu
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yiqiu Xia
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yi Tang
- Wiley Lab/Avian VirologyDepartment of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wen‐Long Zhang
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yin‐Ting Yeh
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Huaguang Lu
- Wiley Lab/Avian VirologyDepartment of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Si‐Yang Zheng
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| |
Collapse
|
13
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
14
|
Yan Z, Clark IC, Abate AR. Rapid Encapsulation of Cell and Polymer Solutions with Bubble-Triggered Droplet Generation. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zihao Yan
- Bioengineering and Therapeutic Sciences; California Institute for Quantitative Biosciences (QB3); University of California San Francisco; 1700 4th Street, Byers Hall 303C San Francisco CA 94158 USA
| | - Iain C. Clark
- Bioengineering and Therapeutic Sciences; California Institute for Quantitative Biosciences (QB3); University of California San Francisco; 1700 4th Street, Byers Hall 303C San Francisco CA 94158 USA
| | - Adam R. Abate
- Bioengineering and Therapeutic Sciences; California Institute for Quantitative Biosciences (QB3); University of California San Francisco; 1700 4th Street, Byers Hall 303C San Francisco CA 94158 USA
| |
Collapse
|
15
|
Lee SH, Lee JH, Lee HW, Kim YH, Jeong OC, Ahn JY. On-Flow Synthesis of Co-Polymerizable Oligo-Microspheres and Application in ssDNA Amplification. PLoS One 2016; 11:e0159777. [PMID: 27447941 PMCID: PMC4957773 DOI: 10.1371/journal.pone.0159777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023] Open
Abstract
We fabricated droplet-based microfluidic platform for copolymerizable microspheres with acrydite modified DNA probe. The copolymerizable 3-D polyacrylamide microspheres were successfully produced from microcontinuous-flow synthesis with on-channel solidification. DNA copolymerization activity, surface presentation and thermostability were assessed by using fluorescent labeled complementary probe. The binding performance was only visible on the surface area of oligo-microspheres. We show that the resulting oligo-microspheres can be directly integrated into a streamlined microsphere-PCR protocol for amplifying ssDNA. Our microspheres could be utilized as a potential material for ssDNA analysis such as DNA microarray and automatic DNA SELEX process.
Collapse
Affiliation(s)
- Se Hee Lee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jae Ha Lee
- Graduate School of Mechanical Engineering, Inje University, 197 Inje-ro, Gimhae, Gyungnam 621–749, South Korea
| | - Ho Won Lee
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, Gyungnam 621–749, South Korea
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Ok Chan Jeong
- Graduate School of Mechanical Engineering, Inje University, 197 Inje-ro, Gimhae, Gyungnam 621–749, South Korea
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, Gyungnam 621–749, South Korea
- * E-mail: (OCJ); (J-YA)
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
- * E-mail: (OCJ); (J-YA)
| |
Collapse
|
16
|
Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. NANOSCALE 2016; 8:12406-29. [PMID: 26831217 DOI: 10.1039/c5nr08534a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The study of cancer is of great significance to human survival and development, due to the fact that cancer has become one of the greatest threats to human health. In recent years, the rapid progress of nanoscience and nanotechnology has brought new and bright opportunities to this field. In particular, the applications of quantum dots (QDs) and magnetic nanoparticles (MNPs) have greatly promoted early diagnosis and effective therapy of cancer. In this review, we focus on fluorescent/magnetic micro/nano-spheres based on QDs and/or MNPs (we may call them "nanoparticle-sphere (NP-sphere) composites") from their preparation to their bio-application in cancer research. Firstly, we outline and compare the main four kinds of methods for fabricating NP-sphere composites, including their design principles, operation processes, and characteristics (merits and limitations). The NP-sphere composites successfully inherit the unique fluorescence or magnetic properties of QDs or MNPs. Moreover, compared with the nanoparticles (NPs) alone, the NP-sphere composites show superior properties, which are also discussed in this review. Then, we summarize their recent applications in cancer research from three aspects, that is: separation and enrichment of target tumor cells or biomarkers; cancer diagnosis mainly through medical imaging or tumor biomarker detection; and cancer therapy via targeted drug delivery systems. Finally, we provide some perspectives on the future challenges and development trends of the NP-sphere composites.
Collapse
Affiliation(s)
- Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu X, Cheng G, Zheng SY. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability. Sci Rep 2016; 6:25459. [PMID: 27147586 PMCID: PMC4857104 DOI: 10.1038/srep25459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023] Open
Abstract
In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min(-1) (R(2) = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn't show much decrease of the catalytic capability.
Collapse
Affiliation(s)
- Xu Yu
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gong Cheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Wang K, Zhang L, Zhang W, Luo G. Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3174-3185. [PMID: 26978599 DOI: 10.1021/acs.langmuir.6b00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Varied interfacial tension caused by the unsaturated adsorption of surfactants on dripping droplet surfaces is experimentally studied. The mass transfer and adsorption of surfactants, as well as the generation of fresh interfaces, are considered the main factors dominating the surfactant adsorption ratio on droplet surfaces. The diffusion and convective mass transfer of the surfactants are first distinguished by comparing the adsorption depth and the mass flux boundary layer thickness. A characterized mass transfer time is then calculated by introducing an effective diffusion coefficient. A time ratio is furthermore defined by dividing the droplet generation time by the characteristic mass transfer time, t/tm, in order to compare the rates of surfactant mass transfer and droplet generation. Different control mechanisms for different surfactants are analyzed based on the range of t/t(m), and a criterion time ratio using a simplified characteristic mass transfer time, t(m)*, is finally proposed for predicting the appearance of dynamic interfacial tension.
Collapse
Affiliation(s)
- Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Liming Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Wanlu Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| |
Collapse
|
19
|
|