1
|
Basu HS, Kondaraju S, Bahga SS. Lattice Boltzmann finite-difference-based model for fully nonlinear electrohydrodynamic deformation of a liquid droplet. Phys Rev E 2023; 107:065305. [PMID: 37464674 DOI: 10.1103/physreve.107.065305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
Electric field-induced flows involving multiple fluid components with a range of different electrical properties are described by the coupled Taylor-Melcher leaky-dielectric model. We present a lattice Boltzmann (LB)-finite difference (FD) method-based hybrid framework to solve the complete Taylor-Melcher leaky-dielectric model considering the nonlinear surface charge convection effects. Unlike the existing LB-based models, we treat the interfacial discontinuities using direction-specific continuous gradients, which prevents the miscalculation arising due to volumetric gradients without directional derivatives, simultaneously maintaining the electroneutrality of the bulk. While fluid transport is recovered through the LB method using a multiple relaxation time (MRT) scheme, the FD method with a central difference scheme is applied to discretize the charge transport equation at the interface, in addition to the electric field governing equations in the bulk and at the interface. We apply the developed numerical model to study the different regimes of droplet deformation due to an external electric field. Similar to the existing analytical and other numerical models, excluding the surface charge convection (SCC) term from the charge transport equation, the present methodology has shown excellent agreement with the existing literature. In addition, the effect of SCC in each of the regimes is analyzed. With the present numerical model, we observe a strong presence of SCC in the oblate deformation regime, contrary to the weak effect on prolate deformations. We further discuss the reason behind such differences in the magnitude of nonlinearity induced by the SCC in all the regimes of deformation.
Collapse
Affiliation(s)
- Himadri Sekhar Basu
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Khordha, Odisha-752050, India
| | - Sasidhar Kondaraju
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Khordha, Odisha-752050, India
| | - Supreet Singh Bahga
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Electrocoalescence of water droplet trains in sunflower oil under the coupling of Non-uniform electric and Laminar flow fields. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Raju G, Kyriakopoulos N, Timonen JVI. Diversity of non-equilibrium patterns and emergence of activity in confined electrohydrodynamically driven liquids. SCIENCE ADVANCES 2021; 7:eabh1642. [PMID: 34524853 PMCID: PMC8443174 DOI: 10.1126/sciadv.abh1642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 05/31/2023]
Abstract
Spontaneous emergence of organized states in materials driven by non-equilibrium conditions is of notable fundamental and technological interest. In many cases, the states are complex, and their emergence is challenging to predict. Here, we show that an unexpectedly diverse collection of dissipative organized states emerges in a simple system of two liquids under planar confinement when driven by electrohydrodynamic shearing. At low shearing, a symmetry breaking at the liquid-liquid interface leads to a one-dimensional corrugation pattern. At slightly stronger shearing, topological changes give raise to the emergence of Quincke rolling filaments, filament networks, and two-dimensional bicontinuous fluidic lattices. At strong shearing, the system transitions into dissipating polygonal, toroidal, and active droplets that form dilute gas-like states at low densities and complex active emulsions at higher densities. The diversity of the observed dissipative organized states is exceptional, pointing toward non-equilibrium optical devices and new avenues in several fields of research.
Collapse
|
4
|
Khobaib K, Hornowski T, Rozynek Z. Particle-covered droplet and a particle shell under compressive electric stress. Phys Rev E 2021; 103:062605. [PMID: 34271657 DOI: 10.1103/physreve.103.062605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Understanding of the behavior of an individual droplet suspended in a liquid and subjected to a stress is important for studying and designing more complex systems, such as emulsions. Here, we present an experimental study of the behavior of a particle-covered droplet and its particle shell under compressive stress. The stress was induced by an application of a DC electric field. We studied how the particle coverage (φ), particle size (d), and the strength of an electric field (E) influence the magnitude of the droplet deformation (D). The experimental results indicate that adding electrically insulating particles to a droplet interface drastically changes the droplet deformation by increasing its magnitude. We also found that the magnitude of the deformation is not retraceable during the electric field sweeping, i.e., the strain-stress curves form a hysteresis loop due to the energy dissipation. The field-induced droplet deformation was accompanied by structural and morphological changes in the particle shell. We found that shells made of smaller particles were more prone to jamming and formation of arrested shells after removal of an electric stress.
Collapse
Affiliation(s)
- Khobaib Khobaib
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Tomasz Hornowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Zbigniew Rozynek
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.,PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
5
|
Song R, Cho S, Shin S, Kim H, Lee J. From shaping to functionalization of micro-droplets and particles. NANOSCALE ADVANCES 2021; 3:3395-3416. [PMID: 36133725 PMCID: PMC9419121 DOI: 10.1039/d1na00276g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/15/2023]
Abstract
The structure of microdroplet and microparticle is a critical factor in their functionality, which determines the distribution and sequence of physicochemical reactions. Therefore, the technology of precisely tailoring their shape is requisite for implementing the user demand functions in various applications. This review highlights various methodologies for droplet shaping, classified into passive and active approaches based on whether additional body forces are applied to droplets to manipulate their functions and fabricate them into microparticles. The passive approaches cover batch emulsification, solvent evaporation and diffusion, micromolding, and microfluidic methods. In active approaches, the external forces, such as electrical and magnetic fields or optical lithography, are applied to microdroplets. Special attention is also given to latest technologies using microdroplets and microparticles, especially in the fields of biological, optical, robotic, and environmental applications. Finally, this review aims to address the advantages and disadvantages of the introduced approaches and suggests the direction for further development in this field.
Collapse
Affiliation(s)
- Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Seongsu Cho
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Seonghun Shin
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Hyejeong Kim
- School of Mechanical Engineering, Korea University Seoul 02841 Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
- Institute of Quantum Biophysics, Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
6
|
Khobaib K, Mikkelsen A, Vincent-Dospital T, Rozynek Z. Electric-field-induced deformation, yielding, and crumpling of jammed particle shells formed on non-spherical Pickering droplets. SOFT MATTER 2021; 17:5006-5017. [PMID: 33908579 DOI: 10.1039/d1sm00125f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplets covered with densely packed solid particles, often called Pickering droplets, are used in a variety of fundamental studies and practical applications. For many applications, it is essential to understand the mechanics of such particle-laden droplets subjected to external stresses. Several research groups have studied theoretically and experimentally the deformation, relaxation, rotation, and stability of Pickering droplets. Most of the research concerns spherical Pickering droplets. However, little is known about non-spherical Pickering droplets with arrested particle shells subjected to compressive stress. The experimental results presented here contribute to filling this gap in research. We deform arrested non-spherical Pickering droplets by subjecting them to electric fields, and study the effect of droplet geometry and size, as well as particle size and electric field strength, on the deformation and yielding of arrested non-spherical Pickering droplets. We explain why a more aspherical droplet and/or a droplet covered with a shell made of larger particles required higher electric stress to deform and yield. We also show that an armored droplet can absorb the electric stress differently (i.e., through either in-plane or out-of-plane particle rearrangements) depending on the strength of the applied electric field. Furthermore, we demonstrate that particle shells may fail through various crumpling instabilities, including ridge formation, folding, and wrinkling, as well as inward indentation.
Collapse
Affiliation(s)
- K Khobaib
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - A Mikkelsen
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - T Vincent-Dospital
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| | - Z Rozynek
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland. and PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
7
|
Rozynek Z, Banaszak J, Mikkelsen A, Khobaib K, Magdziarz A. Electrorotation of particle-coated droplets: from fundamentals to applications. SOFT MATTER 2021; 17:4413-4425. [PMID: 33908583 DOI: 10.1039/d1sm00122a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electrically insulating objects immersed in a weakly conducting liquid may Quincke rotate when subjected to an electric field. Experimental and theoretical investigations of this type of electrorotation typically concern rigid particles and particle-free droplets. This work provides the basic features of electric field-induced rotation of particle-covered droplets that expand the current knowledge in this area. Compared to pure droplets, we show that adding particles to the droplet interface considerably changes the parameters of electrorotation. We study in detail deformation magnitude (D), orientation (β) and rotation rate (ω) of a droplet subjected to a DC E-field. Our experimental results reveal that both the critical electric field (for electrorotation) and the rotational rate depend on droplet size, particle shell morphology (smooth vs. brush-like), and composition (loose vs. locked particles). We also demonstrate the importance of the electrical parameters of the surface particles by comparing the behavior of droplets covered by (insulating) polymeric particles and droplets covered by (non-ohmic) clay mineral particles. The knowledge acquired from the electrorotation experiments is directly translated into practical applications: (i) to form arrested droplets with shells of different permeability; (ii) to study solid-to-liquid transition of particle shells; (iii) to mix particles on shells; and (iv) to increase the formation efficiency of Pickering emulsions.
Collapse
Affiliation(s)
- Z Rozynek
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland and PoreLab, The Njord Centre, Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway.
| | - J Banaszak
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - A Mikkelsen
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - K Khobaib
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - A Magdziarz
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Hu Y, Vlahovska PM, Miksis MJ. Electrohydrodynamic assembly of colloidal particles on a drop interface. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2357-2371. [PMID: 33892549 DOI: 10.3934/mbe.2021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A mathematical model to simulate the dynamics of colloidal particles on a drop interface in an applied electric field is presented. The model accounts for the electric field driven flow within the drop and suspending fluid, particle-particle electrostatic interaction, and the particle motion and rotation due to the induced flow and the applied electric field. The model predicts the formation of chains in the case of conducting particles or an undulating band around the equator in the case of dielectric particles. The model results are in agreement with recent experimental work. A study is presented on the impact of particle concentration and electric field strength on the collective motions of the particles. In the case of non-conducting particles, we find that in the presence of Quincke rotation, the amplitude of the undulations of the observed equatorial particle belt increases with particle concentration but decreases with electric field strength. We also show that the wavelength of the undulations appears independent of the applied field strength.
Collapse
Affiliation(s)
- Yi Hu
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Michael J Miksis
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Hu J, Chen J, Zhang X, Xiao J, An S, Luan Z, Liu F, Zhang B. Dynamic demulsification of oil-in-water emulsions with electrocoalescence: Diameter distribution of oil droplets. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Abbasi MS, Song R, Cho S, Lee J. Electro-Hydrodynamics of Emulsion Droplets: Physical Insights to Applications. MICROMACHINES 2020; 11:E942. [PMID: 33080954 PMCID: PMC7603096 DOI: 10.3390/mi11100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
The field of droplet electrohydrodynamics (EHD) emerged with a seminal work of G.I. Taylor in 1966, who presented the so-called leaky dielectric model (LDM) to predict the droplet shapes undergoing distortions under an electric field. Since then, the droplet EHD has evolved in many ways over the next 55 years with numerous intriguing phenomena reported, such as tip and equatorial streaming, Quincke rotation, double droplet breakup modes, particle assemblies at the emulsion interface, and many more. These phenomena have a potential of vast applications in different areas of science and technology. This paper presents a review of prominent droplet EHD studies pertaining to the essential physical insight of various EHD phenomena. Here, we discuss the dynamics of a single-phase emulsion droplet under weak and strong electric fields. Moreover, the effect of the presence of particles and surfactants at the emulsion interface is covered in detail. Furthermore, the EHD of multi-phase double emulsion droplet is included. We focus on features such as deformation, instabilities, and breakups under varying electrical and physical properties. At the end of the review, we also discuss the potential applications of droplet EHD and various challenges with their future perspectives.
Collapse
Affiliation(s)
- Muhammad Salman Abbasi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
| | - Seongsu Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (M.S.A.); (R.S.); (S.C.)
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Deformation of Emulsion Droplet with Clean and Particle-Covered Interface under an Electric Field. MATERIALS 2020; 13:ma13132984. [PMID: 32635514 PMCID: PMC7372396 DOI: 10.3390/ma13132984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The electrohydrodynamic deformation of an emulsion droplet with a clean and particle-covered interface was explored. Here, the electrohydrodynamic deformation was numerically and experimentally demonstrated under the stimuli of moderate and strong electric fields. The numerical method involves the coupling of the Navier–Stokes equation with the level set equation of interface tracking and the governing equations of so-called leaky dielectric theory. The simulation model developed for a clean interface droplet was then extended to a capsule model for densely particle-covered droplets. The experiments were conducted using various combinations of immiscible oils and particle suspensions while the electric field strength ~105 V/m was generated using a high voltage supply. The experimental images obtained by the camera were post-processed using an in-house image processing code developed on the plat-form of MATLAB software. The results show that particle-free droplets can undergo prolate (deformation in the applied electric field direction) or oblate deformation (deformation that is perpendicular to the direction of the applied electric field) of the droplet interface, whereas the low-conductivity particles can be manipulated at the emulsion interface to form a ‘belt’, ‘helmet’ or ‘cup’ morphologies. A densely particle-covered droplet may not restore to its initial spherical shape due to ‘particle jamming’ at the interface, resulting in the formation of unique droplet shapes. Densely particle-covered droplets behave like droplets covered with a thin particle sheet, a capsule. The deformation of such droplets is explored using a simulation model under a range of electric capillary numbers (i.e., the ratio of the electric stresses to the capillary stresses acting at the droplet interface). The results obtained are then compared with the theory and experimental findings. It was shown that the proposed simulation model can serve as a tool to predict the deformation/distortion of both the particle-free and the densely particle-covered droplets within the small deformation limit. We believe that this study could provide new findings for the fabrication of complex-shaped species and colloidosomes.
Collapse
|
12
|
Pradillo GE, Karani H, Vlahovska PM. Quincke rotor dynamics in confinement: rolling and hovering. SOFT MATTER 2019; 15:6564-6570. [PMID: 31360980 DOI: 10.1039/c9sm01163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Quincke effect is an electrohydrodynamic instability which gives rise to a torque on a dielectric particle in a uniform DC electric field. Previous studies reported that a sphere initially resting on the electrode rolls with steady velocity. We experimentally find that in strong fields the rolling becomes unsteady, with time-periodic velocity. Furthermore, we find another regime, where the rotating sphere levitates in the space between the electrodes. Our experimental results show that the onset of Quincke rotation strongly depends on particle confinement and the threshold for rolling is higher compared to rotation in the hovering state.
Collapse
Affiliation(s)
- Gerardo E Pradillo
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hamid Karani
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Petia M Vlahovska
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
13
|
Mikkelsen A, Rozynek Z. Mechanical Properties of Particle Films on Curved Interfaces Probed through Electric Field-Induced Wrinkling of Particle Shells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29396-29407. [PMID: 31329414 DOI: 10.1021/acsami.9b08045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Similar to the human skin, a monolayer of packed particles capillary bound to a liquid interface wrinkles when subjected to compressive stress. The induced wrinkles absorb the applied stress and do not disappear unless the stress is removed. Experimental and theoretical investigations of wrinkle formation typically concern flat particle monolayers subjected to uniaxial stress. In this work, we extend the results on wrinkling of particle-covered interfaces to the investigation of mechanical properties of particle films on a curved interface, that is, we study particle shells formed on droplets and subjected to hoop stress. Opposed to flat particle layers where liquid buoyancy alone acts as the effective stiffness, the mechanical properties of particle layers on small droplets are also affected by the surface curvature. We show here that this leads to formation of wrinkles with different characteristic wavelengths compared to those found at flat interfaces. Our experimental results also reveal that the wrinkle wavelength of particle shells is proportional to the square root of particle size and the size of the droplets on which the shells are formed. Wrinkling of particle layers composed of microparticles with diameters ranging from around 1-100 μm was induced using a novel approach combining electrodeformation and electrohydrodynamic flows. We demonstrate that our contactless approach for studying the mechanical properties of particle shells enables estimation of elasticity, particle film thickness, and bending stiffness of particle shells. The proposed approach is insensitive to both particle coverage and electric field strength. In addition, it enables manipulation of particle packing that is intimately linked with formation of wrinkling patterns. With a wide range of applications depending on accurate mechanical properties (e.g., drug-delivery capsules to self-healing materials), this work provides a valuable method to characterize the mechanical properties of shells and tailor their surface properties (i.e., permeability and roughness).
Collapse
Affiliation(s)
- A Mikkelsen
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
| | - Z Rozynek
- Faculty of Physics , Adam Mickiewicz University , Uniwersytetu Poznańskiego 2 , Poznań 61-614 , Poland
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
14
|
Randall GC. Electric Field Deformation of Protein-Coated Droplets in Thin Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10028-10039. [PMID: 30060664 DOI: 10.1021/acs.langmuir.8b01713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-strength droplet interfaces are attractive for many applications, specifically in cases where droplets are channeled through fluidic devices and manipulated by electromagnetic fields. Using models and experiments, we study the deformation of droplets and capsules with protein interfaces in an electric field in thin and wide electrode gaps. Proteins are chosen from candidates expected to display qualitatively different interfacial interactions and strengths: a globular protein (bovine serum albumin), a reversible cross-linking peptide (AFD4), and a hydrophobin (cerato ulmin). Dilute protein additives can lead to over 1 order of magnitude stronger oil-water interfaces than those stabilized by small surfactants. We develop small deformation models to evaluate a protein membrane's interfacial elasticity, notably accounting for the electric field perturbation encountered in a gap and a careful treatment of a generalized elastic interface with both surface tension and interfacial elasticity. Results indicate that globular proteins, which typically have comparable surface tension and interfacial elasticity, can be modeled well by this generalized elastic interface. We further find that when in a gap, droplets and capsules migrate toward one electrode, deform asymmetrically, exhibit polar spreading on the electrode, and predictably stretch more than in the infinite gap scenario at constant field strength.
Collapse
Affiliation(s)
- Greg C Randall
- General Atomics , San Diego , California 92121 , United States
| |
Collapse
|
15
|
Ren B, Kang Y. Demulsification of Oil-in-Water (O/W) Emulsion in Bidirectional Pulsed Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8923-8931. [PMID: 29966418 DOI: 10.1021/acs.langmuir.8b01581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The research about electric demulsification of oil-in-water (O/W) emulsion is not enough at present, especially compared with that about electric demulsification of water-in-oil (W/O) emulsion. As an easy and novel method, a bidirectional pulsed electric field (BPEF) was investigated to demulsify the O/W emulsion in this work. Here we report that BPEF could actuate O/W emulsion to form rotational flow and drove oil droplets to form oil-droplet chains and to coalescence. In order to interpret the mutual attraction and coalescence of oil drops in BPEF, we put forward the hypothesis that charges on an oil drop surface would redistribute in BPEF, and we built the charge redistribution model according to the adsorption phenomenon of oil droplets. The behavior of oil drops in BPEF could be successfully explained in terms of the hypothesis and the model. The charge redistribution on an oil droplet surface could be evaluated by the two parameters we proposed. An amended potential redistribution formula of an oil drop surface was also obtained according to the model. The O/W emulsions were successfully demulsified by BPEF in the experiments. It showed that BPEF could be a significant method for electric demulsification of O/W emulsions.
Collapse
Affiliation(s)
- Boping Ren
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Yong Kang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
16
|
Mikkelsen A, Khobaib K, Eriksen FK, Måløy KJ, Rozynek Z. Particle-covered drops in electric fields: drop deformation and surface particle organization. SOFT MATTER 2018; 14:5442-5451. [PMID: 29901062 DOI: 10.1039/c8sm00915e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Drops covered by adsorbed particles are a prominent research topic because they hold promise for a variety of practical applications. Unlocking the enormous potential of particle-laden drops in new material fabrication, for instance, requires understanding how surface particles affect the electrical and deformation properties of drops, as well as developing new routes for particle manipulation at the interface of drops. In this study, we utilized electric fields to experimentally investigate the mechanics of particle-covered silicone oil drops suspended in castor oil, as well as particle assembly at drop surfaces. We used particles with electrical conductivities ranging from insulating polystyrene to highly conductive silver. When subjected to electric fields, drops can change shape, rotate, or break apart. In the first part of this work, we demonstrate how the deformation magnitude and shape of drops, as well as their electrical properties, are affected by electric field strength, particle size, conductivity, and coverage. We also discuss the role of electrohydrodynamic flows on drop deformation. In the second part, we present the electric field-directed assembly and organization of particles at drop surfaces. In this regard, we studied various parameters in detail, including electric field strength, particle size, coverage, and electrical conductivity. Finally, we present a novel method for controlling the local particle coverage and packing of particles on drop surfaces by simply tuning the frequency of the applied electric field. This approach is expected to find uses in optical materials and applications.
Collapse
Affiliation(s)
- A Mikkelsen
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | | | | | | | | |
Collapse
|
17
|
Rozynek Z, Bielas R, Józefczak A. Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields. SOFT MATTER 2018; 14:5140-5149. [PMID: 29881858 DOI: 10.1039/c8sm00671g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplets covered by adsorbed particles are used in a wide range of research studies and applications, including stabilising emulsions used in the food or cosmetic industries, and fabricating new materials, such as microcapsules or multi-cavity structures. Pickering emulsions are commonly prepared by bulk emulsification techniques, for instance, by ultrasonic homogenisation or mechanical stirring, by membrane emulsification, or with the use of microfluidics. The latter two methods typically allow for more precise control of the droplet size distribution, whereas the bulk techniques guarantee high throughput. Here we propose a new bulk approach to fabricating Pickering emulsions by utilising electric fields. We prepare oil-in-oil emulsions stabilised by microparticles and control the mean size of the Pickering droplets. In our approach we take advantage of total surface area reduction of emulsion droplets by electrocoalescence. This leads to an increase in particle coverage, and eventually to formation of densely packed particle shells on Pickering droplets. First, we prepare an unstable pre-emulsion with droplets having small sizes and low particle coverages, from which the final Pickering emulsion is formed via consecutive coalescence events speeded up by application of electric fields. We monitor the development of the emulsions with optical microscopy imaging. The results demonstrate that the utilisation of electric fields goes beyond the mere role of enhancing coalescence; it plays an important role in surface particle manipulation and droplet rotation that further promote formation of stable particle-covered drops.
Collapse
Affiliation(s)
- Z Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
18
|
Ruud ED, Dutcher CS. Electrohydrodynamic aggregation with vertically inverted systems. Phys Rev E 2018; 97:022614. [PMID: 29548158 DOI: 10.1103/physreve.97.022614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 06/08/2023]
Abstract
Flow patterns surrounding particles suspended near electrodes within an electrolyte solution can be induced with an electric field due to an electrohydrodynamic (EHD) force. Depending on electrolyte, particle, and field properties, a variety of particle packing and stability states have been observed in EHD flow. In this work, we report evidence of EHD flow-induced aggregation of 2-μm sulfonated latex beads in NaCl and NaOH electrolyte solutions, in inverted particle-electrode orientations. Experimental conditions were chosen to match previous work where aggregation was observed at a bottom electrode. Particles remain stable at the top electrode for times greater than 1 h, and aggregation behavior is quantified in terms of growth rate and particle packing density and order. Similar aggregation behavior is seen at both top and bottom electrodes, with aggregate growth occurring more quickly within NaCl solutions than NaOH solutions at both the bottom and top electrode. In addition, an observed secondary location of stability for the vertical position of particles in NaOH electrolyte at the bottom electrode is not seen at the top electrode. Comparing these metrics to predictions made by a scaling model for EHD flow, particle aggregation behavior is successfully predicted at both top and bottom electrodes, but some of the observed differences in aggregate packing are not. Thus we suggest that modifications to existing models or their interpretation may be needed to improve predictions of the behavior of such systems.
Collapse
Affiliation(s)
- Eric D Ruud
- University of Minnesota, Twin Cities, Department of Mechanical Engineering, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Cari S Dutcher
- University of Minnesota, Twin Cities, Department of Mechanical Engineering, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
19
|
Mochizuki T. Rotating Motion of an Oil Droplet in a Circular Channel Subjected to a Transverse Alternating Electric Field. ACS OMEGA 2018; 3:1031-1040. [PMID: 31457946 PMCID: PMC6641384 DOI: 10.1021/acsomega.7b01715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 05/05/2023]
Abstract
The transient behavior of a silicone oil droplet passing through a circular channel in which castor oil passes as a surrounding fluid is investigated in both a periodically intermittent alternating electric field and a sinusoidal alternating electric field. When a periodically intermittent electric field with a low frequency and medium strength is applied, the droplet first undergoes ellipsoidal deformation where the major axis is oriented in the direction between the electric field direction and the direction normal to the electric field and electrorotation occurs. The inclined major axis tilts away from the electric field direction and then approaches it. For the case where a sinusoidal alternating electric field with medium strength is applied, electrorotation occurs when the frequency of the alternating sinusoidal electric field is low, whereas the droplet periodically deforms between a prolate and an oblate ellipsoid at certain frequencies. When the frequency of the electric field applied is high, the droplet remains spherical or undergoes deformation to a quasi-steady prolate ellipsoid with an aspect ratio of almost unity.
Collapse
|
20
|
Rendos A, Alsharif N, Kim BL, Brown KA. Elasticity and failure of liquid marbles: influence of particle coating and marble volume. SOFT MATTER 2017; 13:8903-8909. [PMID: 28951907 DOI: 10.1039/c7sm01676j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When coated with microscale hydrophobic particles, macroscopic liquid droplets can become non-wetting liquid marbles that exhibit an array of fascinating solid-like properties. Specifically, the force required to uniaxially compress liquid marbles depends on their volume, but it is unclear if the particle coating plays a role. In contrast, the failure of marbles upon compression does depend on the particle coating, but the conditions for failure do not appear to change with marble volume. Here, we experimentally study the elastic deformation and failure of liquid marbles and, by applying a doubly truncated oblate spheroid model to quantify their surface area, explore the role of marble volume and particle composition. First, we find that the work required to compress liquid marbles agrees with the product of the core fluid surface tension and the change in the marble surface area, validating that the elastic mechanics of liquid marbles is independent of the particle coating. Next, we study marble failure by measuring their ductility as quantified by the maximum fractional increase in marble surface area prior to rupture. Not only does marble ductility depend on the particle coating, but it also depends on marble volume with smaller marbles being more ductile. This size effect is attributed to an interaction between marble curvature and particle rafts held together by interparticle forces. These results illuminate new avenues to tailor the rupture of liquid marbles for applications spanning smart fluid handling and pollution mitigation.
Collapse
Affiliation(s)
- Abigail Rendos
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
21
|
Mikkelsen A, Rozynek Z, Khobaib K, Dommersnes P, Fossum JO. Transient deformation dynamics of particle laden droplets in electric field. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Mikkelsen A, Dommersnes P, Rozynek Z, Gholamipour-Shirazi A, Carvalho MDS, Fossum JO. Mechanics of Pickering Drops Probed by Electric Field-Induced Stress. MATERIALS 2017; 10:ma10040436. [PMID: 28772796 PMCID: PMC5506933 DOI: 10.3390/ma10040436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/26/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
Fluid drops coated with particles, so-called Pickering drops, play an important role in emulsion and capsule applications. In this context, knowledge of mechanical properties and stability of Pickering drops are essential. Here we prepare Pickering drops via electric field-driven self-assembly. We use direct current (DC) electric fields to induce mechanical stress on these drops, as a possible alternative to the use of, for example, fluid flow fields. Drop deformation is monitored as a function of the applied electric field strength. The deformation of pure silicone oil drops is enhanced when covered by insulating polyethylene (PE) particles, whereas drops covered by conductive clay particles can also change shape from oblate to prolate. We attribute these results to changes in the electric conductivity of the drop interface after adding particles, and have developed a fluid shell description to estimate the conductivity of Pickering particle layers that are assumed to be non-jammed and fluid-like. Retraction experiments in the absence of electric fields are also performed. Particle-covered drops retract slower than particle-free drops, caused by increased viscous dissipation due to the presence of the Pickering particle layer.
Collapse
Affiliation(s)
- Alexander Mikkelsen
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Paul Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Zbigniew Rozynek
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Azarmidokht Gholamipour-Shirazi
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Rio de Janeiro, Brazil.
| | - Marcio da Silveira Carvalho
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Rio de Janeiro, Brazil.
| | - Jon Otto Fossum
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Rio de Janeiro, Brazil.
- Institut Pierre-Gilles de Gennes, 6-12 rue Jean Calvin, Paris 75005, France.
| |
Collapse
|
23
|
Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres. MATERIALS 2017; 10:ma10040329. [PMID: 28772690 PMCID: PMC5507009 DOI: 10.3390/ma10040329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022]
Abstract
A designed assembly of particles at liquid interfaces offers many advantages for development of materials, and can be performed by various means. Electric fields provide a flexible method for structuring particles on drops, utilizing electrohydrodynamic circulation flows, and dielectrophoretic and electrophoretic interactions. In addition to the properties of the applied electric field, the manipulation of particles often depends on the intrinsic properties of the particles to be assembled. Here, we present an easy approach for producing polystyrene microparticles with different electrical properties. These particles are used for investigations into electric field-guided particle assembly in the bulk and on surfaces of oil droplets. By sulfonating polystyrene particles, we produce a set of particles with a range of dielectric constants and electrical conductivities, related to the sulfonation reaction time. The paper presents diverse particle behavior driven by electric fields, including particle assembly at different droplet locations, particle chaining, and the formation of ribbon-like structures with anisotropic properties.
Collapse
|
24
|
Samudrala N, Nam J, Sarfati R, Style RW, Dufresne ER. Mechanical stability of particle-stabilized droplets under micropipette aspiration. Phys Rev E 2017; 95:012805. [PMID: 28208345 DOI: 10.1103/physreve.95.012805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 06/06/2023]
Abstract
We investigate the mechanical behavior of particle-stabilized droplets using micropipette aspiration. We observe that droplets stabilized with amphiphilic dumbbell-shaped particles exhibit a two-stage response to increasing suction pressure. Droplets first drip, then wrinkle and buckle like an elastic shell. While particles have a dramatic impact on the mechanism of failure, the mechanical strength of the droplets is only modestly increased. On the other hand, droplets coated with the molecular surfactant sodium dodecyl sulfate are even weaker than bare droplets. In all cases, the magnitude of the critical pressure for the onset of instabilities is set by the fluid surface tension.
Collapse
Affiliation(s)
| | - Jin Nam
- AMOREPACIFIC Co., Gyeonggi-do, Seoul 446-729, South Korea
| | | | | | | |
Collapse
|
25
|
Thaokar RM. Time-dependent electrohydrodynamics of a compressible viscoelastic capsule in the small-deformation limit. Phys Rev E 2016; 94:042607. [PMID: 27841621 DOI: 10.1103/physreve.94.042607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 06/06/2023]
Abstract
A theoretical analysis of the time-dependent electrohydrodynamics of a viscoelastic compressible capsule, characterized by the two-dimensional Young's modulus and surface viscosity, is studied in the small-deformation limit. A systematic ac electrohydrodynamics analysis is conducted, and time-independent and time-periodic deformations are related to the electric capillary number and the membrane properties. Additionally, the relaxation of a capsule stretched by a dc electric field is also presented. This necessitates an accurate estimation of the initial strain field in the stretched capsule. Both an oscillatory analysis and an analysis of the relaxation of a stretched capsule are presented for a capsule containing an aqueous phase, modeled as a perfect conductor, and suspended in a perfect dielectric with an infinitesimally thin viscoelastic membrane separating the two. The membrane is assumed to be a perfect dielectric with no electrical contrast with the suspending fluid.
Collapse
Affiliation(s)
- Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| |
Collapse
|
26
|
Um T, Hong J, Im DJ, Lee SJ, Kang IS. Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids. Sci Rep 2016; 6:31901. [PMID: 27534580 PMCID: PMC4989170 DOI: 10.1038/srep31901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/29/2016] [Indexed: 01/09/2023] Open
Abstract
The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work systematically demonstrates droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. It exhibits three main modes (i.e., attaching, uniform, and bursting modes) as a function of flow rates, applied voltages, and gap distances between the nozzle and the oil surface. Through a conventional nozzle with diameter of a few millimeters, charged droplets with volumes ranging from a few μL to a few tens of nL can be uniformly dispensed into the oil chamber without reduction in nozzle size. Based on the features of the proposed method (e.g., formation of droplets with controllable polarity and amount of electric charge in water and oil system), a simple and straightforward method is developed for microparticle synthesis, including preparation of colloidosomes and fabrication of Janus microparticles with anisotropic internal structures. Finally, a combined system consisting of ECC-induced droplet dispensing and electrophoresis of charged droplet (ECD)-driven manipulation systems is constructed. This integrated platform will provide increased utility and flexibility in microfluidic applications because a charged droplet can be delivered toward the intended position by programmable electric control.
Collapse
Affiliation(s)
- Taewoong Um
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jiwoo Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48547, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - In Seok Kang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|