1
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
2
|
Amarjargal A, Moazzami Goudarzi Z, Cegielska O, Gradys A, Kolbuk D, Kalaska B, Ruszczyńska A, Sajkiewicz P. A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds. Biomater Sci 2023; 11:5502-5516. [PMID: 37378581 DOI: 10.1039/d3bm00837a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Local bacterial infections lead to delayed wound healing and in extreme cases, such as diabetic foot ulcers, to non-healing due to the impaired cellular function in such wounds. Thus, many scientists have focused on developing advanced therapeutic platforms to treat infections and promote cellular proliferation and angiogenesis. This study presents a facile approach for designing nanofibrous scaffolds in three dimensions (3D) with enhanced antibacterial activity to meet the need of treating chronic diabetic wounds. Being a cationic surfactant as well as an antimicrobial agent, octenidine (OCT) makes a 2D membrane hydrophilic, enabling it to be modified into a 3D scaffold in a "one stone, two birds" manner. Aqueous sodium borohydride (NaBH4) solution plays a dual role in the fabrication process, functioning as both a reducing agent for the in situ synthesis of silver nanoparticles (Ag NPs) anchored on the nanofiber surface and a hydrogen gas producer for expanding the 2D membranes into fully formed 3D nanofiber scaffolds, as demonstrated by morphological analyses. Various techniques were used to characterize the developed scaffold (e.g., SEM, XRD, DSC, FTIR, and surface wettability), demonstrating a multilayered porous structure and superhydrophilic properties besides showing sustained and prolonged release of OCT (61% ± 1.97 in 144 h). Thanks to the synergistic effect of OCT and Ag NPs, the antibacterial performance of the 3D scaffold was significantly higher than that of the 2D membrane. Moreover, cell viability was studied in vitro on mouse fibroblasts L929, and the noncytotoxic character of the 3D scaffold was confirmed. Overall, it is shown that the obtained multifunctional 3D scaffold is an excellent candidate for diabetic wound healing and skin repair.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia.
| | - Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki I Wigury 101, 02-089 Warszawa, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| |
Collapse
|
3
|
Gama N, Ferreira A, Evtuguin D, Barros‐Timmons A. Modified cork/
SEBS
composites for
3D
printed elastomers. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nuno Gama
- CICECO – Aveiro Institute of Materials and Department of Chemistry University of Aveiro – Campus Santiago Aveiro Portugal
| | - Artur Ferreira
- CICECO – Aveiro Institute of Materials and Escola Superior de Tecnologia e Gestão de Águeda – Rua Comandante Pinho e Freitas Águeda Portugal
| | - Dmitry Evtuguin
- CICECO – Aveiro Institute of Materials and Department of Chemistry University of Aveiro – Campus Santiago Aveiro Portugal
| | - Ana Barros‐Timmons
- CICECO – Aveiro Institute of Materials and Department of Chemistry University of Aveiro – Campus Santiago Aveiro Portugal
| |
Collapse
|
4
|
Birhanu G, Doosti-Telgerd M, Zandi-Karimi A, Karimi Z, Porgham Daryasari M, Akbari Javar H, Seyedjafari E. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells by diopside coated Poly-L-lactic Acid-Based nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1879078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gebremariam Birhanu
- Department of Biotechnology, University of Tehran, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mehdi Doosti-Telgerd
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zohreh Karimi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Porgham Daryasari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
| | | |
Collapse
|
5
|
Self-cleaning and Oil/Water Separation of 3D Network Super-hydrophobic Bead-like Fluorinated Silica Pellets/Poly(aryl ether ketone) Composite Membrane Fabricated via a Facile One-step Electrospinning. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Shami Z, Holakooei P. Durable Light-Driven Three-Dimensional Smart Switchable Superwetting Nanotextile as a Green Scaled-Up Oil-Water Separation Technology. ACS OMEGA 2020; 5:4962-4972. [PMID: 32201782 PMCID: PMC7081416 DOI: 10.1021/acsomega.9b03861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 05/31/2023]
Abstract
Stimuli-responsive polymer architectures are attracting a lot of interest, but it still remains a great challenge to develop effective industrial-scale strategies. A single-stage and cost-effective approach was applied to fabricate a three-dimensional (3D) smart responsive surface with fast and reversibly switchable wetting between superhydrophobicity and superhydrophilicity/underwater superoleophobicity properties induced by photo and heat stimuli. Commercially available PVDF and P25TiO2 as starting materials fabricated with a scaled-up electrospinning approach were applied to prepare 3D smart switchable PVDF-P25TiO2 nanotextile superwetted by both UV and solar light that is simply recovered by heat at a reasonable time. The superhydrophilic/underwater superoleophobic photo-induced nanotextile will act in "water-removing" mode in which water quickly passes through and the oil is blocked on the surface. An acceptable recycling, reusing, and superior antifouling and self-cleaning performance arising from a TiO2 photocatalytic effect makes it highly desired in a green scaled-up industry oily wastewater treatment technology. With these advantages, a large-scale industrial production process can be simply simulated by applying a conducting mesh-like collector substrate.
Collapse
|
7
|
Wang H, Ma Z, Liu J, Shi Q, Yin J. Reduction of thrombotic and inflammatory complications of polystyrene-block-polyisoprene-block-polystyrene (SIS) with one-step electrospinning. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:642-657. [PMID: 31860378 DOI: 10.1080/09205063.2019.1707943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polystyrene-block-polyisoprene-block-polystyrene (SIS) has been used as biomaterials due to its soft and stable properties under physiological conditions. However, the thrombotic and inflammatory complications caused by SIS restrain its application as blood-contacting implant. To overcome this problem, the hydrophilic core-shell structured SIS-based microfiber with antioxidant encapsulation is fabricated with one-step reactive electrospinning. We demonstrate that the phase separation of SIS and acylated Pluronic F127 (F127-DA) components and crosslinking during electrospinning renders the microfiber blood compatible and stable under physiological condition; the encapsulation of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) in microfiber and subsequent release of AA-2G detoxifies the excess reactive oxygen species (ROS). The microfibers are nontoxic to cells and promote the fast growth and proliferation of human umbilical vein endothelial cells (HUVECs) in the presence of ROS; the thrombotic and inflammatory complications are effectively reduced with implant evaluation in vivo. Therefore, our work paves a new way to improve the biocompatibility of SIS, making it a promising candidate for blood contact materials.
Collapse
Affiliation(s)
- Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
8
|
Ziemba AM, Lane KP, Balouch B, D'Amato AR, Totsingan F, Gross RA, Gilbert RJ. Lactonic Sophorolipid Increases Surface Wettability of Poly-l-lactic Acid Electrospun Fibers. ACS APPLIED BIO MATERIALS 2019; 2:3153-3158. [PMID: 35030759 DOI: 10.1021/acsabm.9b00268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hydrophobicity of electrospun poly-l-lactic acid (PLLA) fibers hinders their integration with surrounding tissue for a variety of applications. In this study, we increased PLLA fiber hydrophilicity by incorporating the natural surfactant, lactonic sophorolipid (LSL). PLLA+LSL fibers had similar fiber morphology but significantly greater surface wettability, which suggested LSL accumulation on the fiber surface. Differential scanning calorimetry results also suggested that LSL was phase separated from PLLA. Despite the altered surface wettability of these fibers, there was no change in fibroblast adhesion. Future studies may explore the use of this natural surfactant to deliver bioactive factors to enhance fibroblast adhesion.
Collapse
Affiliation(s)
- Alexis M Ziemba
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 Fifteenth Street, Troy, New York 12180, United States
| | - Keith P Lane
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 Fifteenth Street, Troy, New York 12180, United States
| | - Bailey Balouch
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 Fifteenth Street, Troy, New York 12180, United States
| | - Anthony R D'Amato
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 Fifteenth Street, Troy, New York 12180, United States
| | | | - Richard A Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 Fifteenth Street, Troy, New York 12180, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 Fifteenth Street, Troy, New York 12180, United States
| |
Collapse
|
9
|
Chen L, Wang S, Yu Q, Topham PD, Chen C, Wang L. A comprehensive review of electrospinning block copolymers. SOFT MATTER 2019; 15:2490-2510. [PMID: 30860535 DOI: 10.1039/c8sm02484g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning provides a versatile and cost-effective route for the generation of continuous nanofibres with high surface area-to-volume ratio from various polymers. In parallel, block copolymers (BCPs) are promising candidates for many diverse applications, where nanoscale operation is exploited, owing to their intrinsic self-assembling behaviour at these length scales. Judicious combination of BCPs (with their ability to make nanosized domains at equilibrium) and electrospinning (with its ability to create nano- and microsized fibres and particles) allows one to create BCPs with high surface area-to-volume ratio to deliver higher efficiency or efficacy in their given application. Here, we give a comprehensive overview of the wide range of reports on BCP electrospinning with focus placed on the use of molecular design alongside control over specific electrospinning type and post-treatment methodologies to control the properties of the resultant fibrous materials. Particular attention is paid to the applications of these materials, most notably, their use as biomaterials, separation membranes, sensors, and electronic materials.
Collapse
Affiliation(s)
- Lei Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
10
|
Rychter M, Milanowski B, Grześkowiak BF, Jarek M, Kempiński M, Coy EL, Borysiak S, Baranowska-Korczyc A, Lulek J. Cilostazol-loaded electrospun three-dimensional systems for potential cardiovascular application: Effect of fibers hydrophilization on drug release, and cytocompatibility. J Colloid Interface Sci 2019; 536:310-327. [DOI: 10.1016/j.jcis.2018.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023]
|
11
|
Zargarian SS, Haddadi-Asl V, Kafrashian Z, Azarnia M, Mirhosseini MM, Seyedjafari E. Surfactant-assisted-water-exposed versus surfactant-aqueous-solution-exposed electrospinning of novel super hydrophilic polycaprolactone based fibers: Analysis of drug release behavior. J Biomed Mater Res A 2018; 107:597-609. [PMID: 30417973 DOI: 10.1002/jbm.a.36575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 11/08/2022]
Abstract
Surface hydrophilicity and scaffold integrity determine the drug release behavior of drug loaded electrospun fibrous mats. When mixture miscibility is acceptable, blend electrospinning of hydrophobic with hydrophilic polymers can improve scaffold hydrophilicity while the hydrophobic polymer maintains the mechanical strength of scaffold. Polycaprolactone (PCL) and Pluronic P123 (P123) blend electrospinning has been investigated. In routine blend electrospinning, surface enrichment of Pluronic sets a limit for P123 weight ratio in which exceeding from that limit causes the excess P123 to be accumulated within the electrospun fiber core. To overcome this setback, a method named surfactant assisted water exposed (SAWE) electrospinning was introduced which was proven to be effective for increasing the surface enrichment of Pluronic. In order to test the validity of this method, the electrospinning of solution containing PCL which is exposed to aqueous solution of P123 was investigated. This new method was named surfactant aqueous solution exposed (SASE) electrospinning. Myelin formation at the contact interface of aqueous solution and chloroform solution was studied and it was found that this layer can effectively barricade the migration of Pluronic chains between immiscible phases. For SASE, fiber surface coverage by P123 was uneven and loose. Electrospun scaffolds from SAWE and SASE were loaded with drug to investigate the effect of the exposure time during electrospinning on in vitro drug release. By increasing the exposure time, the abnormal two-stage phased release profile of SAWE became normal with moderate initial burst. Longer exposure time increased the initial burst of the drug loaded SASE fibers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 597-609, 2019.
Collapse
Affiliation(s)
- Seyed Shahrooz Zargarian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Zahra Kafrashian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mojdeh Azarnia
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Birhanu G, Tanha S, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Kiani Dehkordi B. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Technol 2018; 24:338-347. [PMID: 29799305 DOI: 10.1080/10837450.2018.1481429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In tissue engineering, it is common to mix drugs that can control proliferation and differentiation of cells into polymeric solutions as part of composite to get bioactive scaffolds. However, direct incorporation of drugs might potentially result in undesired burst release. To overcome this problem, here we developed electrospun multilayer drug loaded poly-l-lactic acid/pluronic P123 (PLLA-P123) composite scaffolds. The drug was loaded into the middle layer. The surface, the mechanical and physiochemical properties of the scaffolds were evaluated. The drug release profiles were monitored. Finally, the osteogenic proliferation and differentiation potential were determined. The scaffolds fabricated here have appropriate surface properties, but with different mechanical strength and osteogenic proliferation and differentiation. Multi-layer scaffolds where the drug was in the middle layer and PLLA-plasma and PLLA-P123 with cover layer showed the best osteogenic proliferation and differentiation than the other groups of scaffolds. The drug release profiles of the scaffolds were completely different: single layer scaffolds showed burst release within the first day, while multilayer scaffolds showed controlled release. Therefore, the multilayer drug loaded scaffolds prepared have dual benefits can provide both better osteogenesis and controlled release of drugs and bioactive molecules at the implant site.
Collapse
Affiliation(s)
- Gebremariam Birhanu
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences, International Campus (TUMS-IC) , Tehran , Iran.,b School of Pharmacy, College of Health Sciences , Addis Ababa University , Addis Ababa , Ethiopia
| | - Shima Tanha
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamid Akbari Javar
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Seyedjafari
- d Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Ali Zandi-Karimi
- d Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Banafsheh Kiani Dehkordi
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Wang H, Xu X, Chen R, Zhao J, Cui L, Sheng G, Shi Q, Wong SC, Yin J. Bioinspired Antioxidant Defense System Constructed by Antioxidants-Eluting Electrospun F127-Based Fibers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38313-38322. [PMID: 29039918 DOI: 10.1021/acsami.7b12395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cells were continuously exposed to oxidative damage by overproduction of reactive oxygen species (ROS) when they contacted implanted biomaterials. The strategy to prevent cells from oxidative injures remains a challenge. Inspired by the antioxidant defense system of cells, we constructed a biocompatible and ROS-responsive architecture on the substrate of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS). The strategy was based on fabrication of architectures through reactive electrospinning of mixture including SEBS, acylated Pluronic F127, copolymer of poly(ethylene glycol) diacrylate and 1,2-ethanedithiol (PEGDA-EDT), and antioxidants (AA-2G) and ROS-triggered release of AA-2G from microfibers to detoxify the excess ROS. We demonstrated that the stable and hydrophilic architecture was constructed by phase separation of SEBS/F127 components and cross-linking between polymer chains during electrospinning; the ROS-responsive fibers controlled the release of AA-2G and the interaction of AA-2G with ROS reduced the oxidative damage to cells. The bioinspired architecture not only reduced mechanical and oxidative damage to cells but also maintained normal ROS level for physiological hemostasis. This work provides basic principles to design and develop antioxidative biomaterials for implantation in vivo.
Collapse
Affiliation(s)
- Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization/Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong , Qingdao 266042, P. R. China
| | - Xiaodong Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Runhai Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jiruo Zhao
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization/Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong , Qingdao 266042, P. R. China
| | - Lele Cui
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Guangkuo Sheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Shing-Chung Wong
- Department of Mechanical Engineering, University of Akron , Akron, Ohio 44325-3903, United States
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
14
|
Birhanu G, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Dusti Telgerd M. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1274-1281. [PMID: 28835133 DOI: 10.1080/21691401.2017.1367928] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly-L-lactic acid (PLLA) nano fibrous scaffolds prepared by electrospinning technology have been used widely in tissue engineering applications. However, PLLA scaffolds are hydrophobic in nature, moreover the fibrous porous structure produced by electrospinning makes the scaffolds even more hydrophobic which generally limits cell attachment and proliferation. Polymer blending is one of the several efforts used so far to enhance hydrophilicity and recognized as an easy cost-effective approach for the manipulation physiochemical properties of polymeric biomaterials. Pluronic block copolymers containing hydrophilic poly(ethylene oxide) (PEO) blocks and hydrophobic poly(propylene oxide) (PPO) blocks are arranged in triblock structure: PEO-PPO-PEO. It is commonly used recently to blend hydrophobic polymers to enhance hydrophilicity for pharmaceutical and tissue engineering applications. In this study, novel pluronic P123 blend PLLA electrospun nanofibre scaffolds with improved hydrophilicity and biological properties were fabricated. The surface morphology and surface chemistry of the nanofibre scaffolds were characterized by scanning electron microscope (SEM) and FTIR analyses. Surface hydrophilicity and change in mechanical properties were studied. The ability of the scaffolds to support the attachment, and proliferation and differentiation of human adipose tissue derived MSCs, were evaluated generally. The fabricated scaffolds have completely improved, hydrophilicity, similar osteogenic differentiation potential with plasma-treated PLLA nanofibre scaffold, and hence P123 blend PLLA electrospun nanofibre scaffolds are a very good and cost effective choice as a scaffold for bone tissue engineering application.
Collapse
Affiliation(s)
- Gebremariam Birhanu
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences, International Campus (TUMS-IC) , Tehran , Iran.,b School of Pharmacy, College of Health Sciences , Addis Ababa University , Addis Ababa , Ethiopia
| | - Hamid Akbari Javar
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Seyedjafari
- d Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Ali Zandi-Karimi
- d Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Mehdi Dusti Telgerd
- e Department of Pharmaceutical Biomaterials, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
15
|
Kurusu RS, Demarquette NR. Surface properties evolution in electrospun polymer blends by segregation of hydrophilic or amphiphilic molecules. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Tsuchiya H, Manabe K, Gaudelet T, Moriya T, Suwabe K, Tenjimbayashi M, Kyong KH, Gillot F, Shiratori S. Improvement of heat transfer by promoting dropwise condensation using electrospun polytetrafluoroethylene thin films. NEW J CHEM 2017. [DOI: 10.1039/c6nj03566c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homogeneous superhydrophobic PTFE thin films showed stable dropwise condensation and much higher heat transfer. They contribute to energy-efficient transfer.
Collapse
Affiliation(s)
- Hirotaka Tsuchiya
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Kengo Manabe
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Thomas Gaudelet
- Laboratoire Tribologie et Dynamique de Syst’emes
- Ecole Centrale de Lyon-CNRS
- 69134 Ecully cedex
- France
| | - Takeo Moriya
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Ken Suwabe
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Mizuki Tenjimbayashi
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Kyu-Hong Kyong
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Fredric Gillot
- Laboratoire Tribologie et Dynamique de Syst’emes
- Ecole Centrale de Lyon-CNRS
- 69134 Ecully cedex
- France
| | - Seimei Shiratori
- Center for Material Design Science
- School of Integrated Design Engineering
- Graduate School of Science and Technology
- Keio University
- Yokohama
| |
Collapse
|
17
|
Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.070] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Zargarian SS, Haddadi-Asl V. Facile fabrication of novel polycaprolactone-based electrospun fibers using in-process water exposure. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2016. [DOI: 10.1080/1023666x.2016.1192837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Zargarian SS, Haddadi-Asl V. Surfactant-assisted water exposed electrospinning of novel super hydrophilic polycaprolactone based fibers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:871-880. [DOI: 10.1080/21691401.2016.1182921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- S. Sh. Zargarian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - V. Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Kurusu RS, Demarquette NR. Wetting of Hydrophilic Electrospun Mats Produced by Blending SEBS with PEO-PPO-PEO Copolymers of Different Molecular Weight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1846-1853. [PMID: 26824615 DOI: 10.1021/acs.langmuir.5b04287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interaction of electrospun mats with water is critical for many possible applications, and the water contact angle on the surface is the parameter usually measured to characterize wetting. Although useful for hydrophobic surfaces, this approach is limited for hydrophilic mats, where wicking also has to be considered. In this case, it is still unclear how the fiber surface chemical composition and morphology will affect the wetting behavior of electrospun mats. In this work, wetting was studied with different hydrophilic membranes produced by blending thermoplastic elastomer poly(styrene)-b-poly(ethylene-butylene)-b-poly(styrene) (SEBS) with amphiphilic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) molecules. Three different types of PEO-PPO-PEO, with different molar masses, PEO content, and physical form were used. The effect of these differences on the wetting behavior of the electrospun mats was evaluated by contact angle goniometry, wicking measurements, and different imaging techniques. X-ray photoelectron spectroscopy was used to characterize the surface chemical composition. The smaller molecules quickly saturated the surface at low concentrations, making the mats hydrophilic. The sheath of PEO-PPO-PEO also resulted in fast absorption of water, when comparing the saturated and nonsaturated surfaces. Longer PEO chain-ends seemed to hinder complete segregation and also led to a higher activation time when in contact with water. Liquid PEO-PPO-PEO was easily leached by water.
Collapse
Affiliation(s)
- Rafael S Kurusu
- Mechanical Engineering Department, École de technologie supérieure - ÉTS, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada
| | - Nicole R Demarquette
- Mechanical Engineering Department, École de technologie supérieure - ÉTS, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada
| |
Collapse
|
21
|
Sheng J, Zhang M, Luo W, Yu J, Ding B. Thermally induced chemical cross-linking reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for waterproof-breathable application. RSC Adv 2016. [DOI: 10.1039/c5ra27913e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thermally induced chemical cross-linking could enhance the FPAN/PVB/BIP composite nanofibrous membranes with robust mechanical, waterproof and breathable performance.
Collapse
Affiliation(s)
- Junlu Sheng
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Min Zhang
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Wenjing Luo
- Department of Occupational and Environmental Health
- School of Public Health
- Fourth Military Medical University
- Xi'an
- China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Bin Ding
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| |
Collapse
|