1
|
Janairo JIB. Sequence rules for gold-binding peptides. RSC Adv 2023; 13:21146-21152. [PMID: 37449032 PMCID: PMC10337651 DOI: 10.1039/d3ra04269c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Metal-binding peptides play a central role in bionanotechnology, wherein they are responsible for directing growth and influencing the resulting properties of inorganic nanomaterials. One of the key advantages of using peptides to create nanomaterials is their versatility, wherein subtle changes in the sequence can have a dramatic effect on the structure and properties of the nanomaterial. However, precisely knowing which position and which amino acid should be modified within a given sequence to enhance a specific property can be a daunting challenge owing to combinatorial complexity. In this study, classification based on association rules was performed using 860 gold-binding peptides. Using a minimum support threshold of 0.035 and confidence of 0.9, 30 rules with confidence and lift values greater than 0.9 and 1, respectively, were extracted that can differentiate high-binding from low-binding peptides. The test performance of these rules for categorizing the peptides was found to be satisfactory, as characterized by accuracy = 0.942, F1 = 0.941, MCC = 0.884. What stands out from the extracted rules are the importance of tryptophan and arginine residues in differentiating peptides with high binding affinity from those with low affinity. In addition, the association rules revealed that positions 2 and 4 within a decapeptide are frequently involved in the rules, thus suggesting their importance in influencing peptide binding affinity to AuNPs. Collectively, this study identified sequence rules that may be used to design peptides with high binding affinity.
Collapse
|
2
|
Zhang Y, Brooks SC, Rosi NL. Molecular Modulator Approach for Controlling the Length of Chiral 1D Single-Helical Gold Nanoparticle Superstructures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5071-5078. [PMID: 37456597 PMCID: PMC10339826 DOI: 10.1021/acs.chemmater.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Indexed: 07/18/2023]
Abstract
Peptide-based methods have proven useful for constructing helical gold nanoparticle superstructures that exhibit strong plasmonic chiroptical activity. Superstructure syntheses using the amphiphilic peptide conjugate C16-(AYSSGAPPMoxPPF)2 typically yield 1D helices with a broad length distribution. In this study, we introduce a molecular modulator approach for controlling helix length. It represents a first step toward achieving narrowly disperse populations of single helices fabricated using peptide-based methods. Varying amounts of modulator, C16-(AYSSGA)2, were added to C16-(AYSSGAPPMoxPPF)2-based single-helix syntheses, resulting in decreased helix length and narrowing of the helix length distribution. Kinetic studies of fiber assembly were performed to investigate the mechanism by which the modulator affects helix length. It was found that the modulator leads to rapid peptide conjugate nucleation and fiber growth, which in turn results in large amounts of short fibers that serve as the underlying scaffold for the single-helix superstructures. These results constitute important advances toward generating monodisperse samples of plasmonic helical colloids.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sydney C. Brooks
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Brooks SC, Jin R, Zerbach VC, Zhang Y, Walsh TR, Rosi NL. Single Amino Acid Modifications for Controlling the Helicity of Peptide-Based Chiral Gold Nanoparticle Superstructures. J Am Chem Soc 2023; 145:6546-6553. [PMID: 36912863 PMCID: PMC10037318 DOI: 10.1021/jacs.3c00827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Assembling nanoparticles (NPs) into well-defined superstructures can lead to emergent collective properties that depend on their 3-D structural arrangement. Peptide conjugate molecules designed to both bind to NP surfaces and direct NP assembly have proven useful for constructing NP superstructures, and atomic- and molecular-level alterations to these conjugates have been shown to manifest in observable changes to nanoscale structure and properties. The divalent peptide conjugate, C16-(PEPAu)2 (PEPAu = AYSSGAPPMPPF), directs the formation of one-dimensional helical Au NP superstructures. This study examines how variation of the ninth amino acid residue (M), which is known to be a key Au anchoring residue, affects the structure of the helical assemblies. A series of conjugates of differential Au binding affinities based on variation of the ninth residue were designed, and Replica Exchange with Solute Tempering (REST) Molecular Dynamics simulations of the peptides on an Au(111) surface were performed to determine the approximate surface contact and to assign a binding score for each new peptide. A helical structure transition from double helices to single helices is observed as the peptide binding affinity to the Au(111) surface decreases. Accompanying this distinct structural transition is the emergence of a plasmonic chiroptical signal. REST-MD simulations were also used to predict new peptide conjugate molecules that would preferentially direct the formation of single-helical AuNP superstructures. Significantly, these findings demonstrate how small modifications to peptide precursors can be leveraged to precisely direct inorganic NP structure and assembly at the nano- and microscale, further expanding and enriching the peptide-based molecular toolkit for controlling NP superstructure assembly and properties.
Collapse
Affiliation(s)
- Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruitao Jin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Victoria C Zerbach
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuyu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Mondal S, Rehak P, Ghosh N, Král P, Gazit E. Linear One-Dimensional Assembly of Metal Nanostructures onto an Asymmetric Peptide Nanofiber with High Persistence Length. ACS NANO 2022; 16:18307-18314. [PMID: 36346650 DOI: 10.1021/acsnano.2c06082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide fibrils have been used extensively to template the organization of metal nanoparticles in a one-dimensional (1D) array. It has been observed that the formation of the 1D arrays with a width of a single or few nanoparticles (viz. 20 nm diameter) is only possible if the templating fibers have comparable diameters (viz. ≤20 nm). Accordingly, until today, all the peptide-based templates enabling such 1D arrays have very low persistence lengths, a property that depends strongly on the diameter of the template, owing to the inherent flexibility of only a few nanometer-wide fibers. Here, we demonstrate the formation of high persistence length 1D arrays templated by a short self-assembling peptide fibril with an asymmetrically distributed charged surface. The asymmetric nature of the peptide fibril allows charge-dependent deposition of the nanoparticles only to the part of the fiber with complementary charges, and the rest of the fibril surface remains free of nanoparticles. Consequently, fibers with a much higher diameter, which will have a higher persistence length, are able to template single or few nanoparticle-wide 1D arrays. Detailed microscopy, molecular dynamics simulations, and crystal structure analysis provide molecular-level insights into fiber asymmetry and its interactions with diverse nanostructures such as gold and magnetic nanoparticles. This study will afford an alternative paradigm for high persistence length 1D array fabrication comparable to DNA nanotechnology and lithography but with tremendous cost-effectiveness.
Collapse
Affiliation(s)
- Sudipta Mondal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Pavel Rehak
- Chemistry, Physics, Pharmaceutical Sciences, Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nandita Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Petr Král
- Chemistry, Physics, Pharmaceutical Sciences, Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo69978, Israel
| |
Collapse
|
6
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
8
|
Mokashi-Punekar S, Brooks SC, Hogan CD, Rosi NL. Leveraging Peptide Sequence Modification to Promote Assembly of Chiral Helical Gold Nanoparticle Superstructures. Biochemistry 2021; 60:1044-1049. [PMID: 32510207 DOI: 10.1021/acs.biochem.0c00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide conjugate molecules comprising a gold-binding peptide (e.g., AYSSGAPPMPPF) attached to an aliphatic tail have proven to be powerful agents for directing the synthesis and assembly of gold nanoparticle superstructures, in particular chiral helices having interesting plasmonic chiroptical properties. The composition and structure of these molecular agents can be tailored to carefully tune the structure and properties of gold nanoparticle single and double helices. To date, modifications to the β-sheet region (AYSSGA) of the peptide sequence have not been exploited to control the metrics and assembly of such superstructures. We report here that systematic peptide sequence variation in a series of gold-binding peptide conjugate molecules can be leveraged not only to affect the assembly of peptide conjugates but also to control the synthesis, assembly, and optical properties of gold nanoparticle superstructures. Depending upon the hydrophobicity of a single-amino acid variant, the conjugates yield either dispersed gold nanoparticles or helical superstructures. These results provide evidence that subtle changes to peptide sequence, via single-amino acid variation in the β-sheet region, can be leveraged to program structural control in chiral gold nanoparticle superstructures.
Collapse
Affiliation(s)
- Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Camera D Hogan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Cao Z, Gao H, Qiu M, Jin W, Deng S, Wong KY, Lei D. Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907151. [PMID: 33252162 DOI: 10.1002/adma.201907151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Determining the structural chirality of biomolecules is of vital importance in bioscience and biomedicine. Conventional methods for characterizing molecular chirality, e.g., circular dichroism (CD) spectroscopy, require high-concentration specimens due to the weak electronic CD signals of biomolecules such as amino acids. Artificially designed chiral plasmonic metastructures exhibit strong intrinsic chirality. However, the significant size mismatch between metastructures and biomolecules makes the former unsuitable for chirality-recognition-based molecular discrimination. Fortunately, constructing metallic architectures through molecular self-assembly allows chirality transfer from sub-nanometer biomolecules to sub-micrometer, intrinsically achiral plasmonic metastructures by means of either near-field interaction or chirality inheritance, resulting in hybrid systems with CD signals orders of magnitude larger than that of pristine biomolecules. This exotic property provides a new means to determine molecular chirality at extremely low concentrations (ideally at the single-molecule level). Herein, three strategies of chirality transfer from sub-nanometer biomolecules to sub-micrometer metallic metastructures are analyzed. The physiochemical mechanisms responsible for chirality transfer are elaborated and new fascinating opportunities for employing plasmonic metastructures in chirality-based biosensing and bioimaging are outlined.
Collapse
Affiliation(s)
- Zhaolong Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Gao
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Meng Qiu
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Jin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
10
|
Mokashi-Punekar S, Zhou Y, Brooks SC, Rosi NL. Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905975. [PMID: 31815327 DOI: 10.1002/adma.201905975] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/12/2019] [Indexed: 05/27/2023]
Abstract
Chiral nanoparticle (NP) superstructures, in which discrete NPs are assembled into chiral architectures, represent an exciting and growing class of nanomaterials. Their enantiospecific properties make them promising candidates for a variety of potential applications. Helical NP superstructures are a rapidly expanding subclass of chiral nanomaterials in which NPs are arranged in three dimensions about a screw axis. Their intrinsic asymmetry gives rise to a variety of interesting properties, including plasmonic chiroptical activity in the visible spectrum, and they hold immense promise as chiroptical sensors and as components of optical metamaterials. Herein, a concise history of the foundational conceptual advances that helped define the field of chiral nanomaterials is provided, and some of the major achievements in the development of helical nanomaterials are highlighted. Next, the key methodologies employed to construct these materials are discussed, and specific merits that are offered by each assembly methodology are identified, as well as their potential disadvantages. Finally, some specific examples of the emerging applications of these materials are discussed and some areas of future development and research focus are proposed.
Collapse
Affiliation(s)
| | - Yicheng Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
11
|
Mokashi-Punekar S, Walsh TR, Rosi NL. Tuning the Structure and Chiroptical Properties of Gold Nanoparticle Single Helices via Peptide Sequence Variation. J Am Chem Soc 2019; 141:15710-15716. [DOI: 10.1021/jacs.9b08798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Tiffany R. Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | | |
Collapse
|
12
|
Urban MJ, Shen C, Kong XT, Zhu C, Govorov AO, Wang Q, Hentschel M, Liu N. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches. Annu Rev Phys Chem 2019; 70:275-299. [DOI: 10.1146/annurev-physchem-050317-021332] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.
Collapse
Affiliation(s)
| | - Chenqi Shen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine Research, and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215213, China
| | - Xiang-Tian Kong
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| | - Chenggan Zhu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine Research, and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215213, China
| | - Alexander O. Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine Research, and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215213, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mario Hentschel
- 4th Physics Institute and Stuttgart Research Center of Photonic Engineering (SCoPE), University of Stuttgart, 70569 Stuttgart, Germany
| | - Na Liu
- Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Kirchhoff-Institute for Physics, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Tigger-Zaborov H, Maayan G. Aggregation of Ag(0) nanoparticles to unexpected stable chain-like assemblies mediated by 2,2′-bipyridine decorated peptoids. J Colloid Interface Sci 2019; 533:598-603. [DOI: 10.1016/j.jcis.2018.08.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
14
|
A Novel Class of Cationic and Non-Peptidic Small Molecules as Hits for the Development of Antimicrobial Agents. Molecules 2018; 23:molecules23071513. [PMID: 29932141 PMCID: PMC6099707 DOI: 10.3390/molecules23071513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022] Open
Abstract
Cationic and non-peptide small molecules containing a total of six positive charges arranged on one side and a long aliphatic tail on the other have been synthesized and tested against Gram-positive and Gram-negative bacteria. The positive charges have been contributed by two aminophenol residues. These molecules have showed remarkable antimicrobial activity against Gram-positive bacteria including multidrug-resistant strains. Our structure⁻activity relationship studies demonstrated the importance of the length and flexibility of the hydrophobic tail for the antimicrobial activity. Importantly, these compounds are non-toxic to eukaryotic cells at the concentration affecting growth in bacteria, reflecting an acceptable margin of safety. The small size and easy synthetic accessibility of our molecules can be of interest for the further development of novel antimicrobials against Gram-positive bacterial pathogens, including multidrug-resistant strains.
Collapse
|
15
|
Gómez de Cedrón M, Vargas T, Madrona A, Jiménez A, Pérez-Pérez MJ, Quintela JC, Reglero G, San-Félix A, Ramírez de Molina A. Novel Polyphenols That Inhibit Colon Cancer Cell Growth Affecting Cancer Cell Metabolism. J Pharmacol Exp Ther 2018; 366:377-389. [PMID: 29871992 DOI: 10.1124/jpet.118.248278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
New series of polyphenols with a hydrophilic galloyl-based head and a hydrophobic N-acyl tail, linked through a serinol moiety, have been synthesized and tested against colon cancer cell growth. Our structure activity relationship studies revealed that galloyl moieties are essential for growth inhibition. Moreover, the length of the N-acyl chain is crucial for the activity. Introduction of a (Z) double bond in the acyl chain increased the anticancer properties. Our findings demonstrate that 16, the most potent compound within this series, has inhibitory effects on colon cancer cell growth and metabolism (glycolysis and mitochondrial respiration) at the same time that it activates 5'AMP-activated kinase (AMPK) and induces apoptotic cell death. Based on these results, we propose that 16 might reprogram colon cancer cell metabolism through AMPK activation. This might lead to alterations on cancer cell bioenergy compromising cancer cell viability. Importantly, these antiproliferative and proapoptotic effects are selective for cancer cells. Accordingly, these results indicate that 16, with an unsaturated C18 chain, might be a useful prototype for the development of novel colon cancer cell growth inhibitors affecting cell metabolism.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Andrés Madrona
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Aranza Jiménez
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - María-Jesús Pérez-Pérez
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - José-Carlos Quintela
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Ana San-Félix
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| |
Collapse
|
16
|
Nakagawa M, Kawai T. Chirality-Controlled Syntheses of Double-Helical Au Nanowires. J Am Chem Soc 2018; 140:4991-4994. [PMID: 29613794 DOI: 10.1021/jacs.8b00910] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The selective large-scale syntheses of noble metal nanocrystals with complex shapes using wet-chemical approaches remain exciting challenges. Here we report the chirality-controllable syntheses of double-helical Au nanowires (NWs) using chiral soft-templates composed of two organogelators with their own active functions; one organogelator serves to introduce helicity into the template and the other acts as a capping agent to control the Au shape. One-dimensional twisted-nanoribbon templates are prepared simply by mixing the two organogelators in water containing a small amount of toluene, followed by the addition of LiCl; template chirality is controlled through the selection of the handedness of the helicity-inducing organogelator. Double-helical Au NWs synthesized on these chiral templates have the same helical structure as the template because the Au NWs grow along both edges of the twisted nanoribbons with right- or left-handed helicities. Dispersions of the right- and left-handed double-helical Au NWs exhibit opposite CD signals.
Collapse
Affiliation(s)
- Makoto Nakagawa
- Department of Industrial Chemistry , Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku , Tokyo 162-8601 , Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry , Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku , Tokyo 162-8601 , Japan
| |
Collapse
|
17
|
Mokashi-Punekar S, Merg AD, Rosi NL. Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices. J Am Chem Soc 2017; 139:15043-15048. [DOI: 10.1021/jacs.7b07143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea D. Merg
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
18
|
Peptide mediated formation of noble metal nanoparticles — controlling size and spatial arrangement. Curr Opin Chem Biol 2017; 40:138-144. [DOI: 10.1016/j.cbpa.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023]
|
19
|
Short Peptides Directing 1D Helical Arrays of Polyoxometalates with Controllable Pitches. Chemistry 2017; 23:13510-13517. [DOI: 10.1002/chem.201702809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/25/2022]
|
20
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
21
|
Lai CT, Rosi NL, Schatz GC. All-Atom Molecular Dynamics Simulations of Peptide Amphiphile Assemblies That Spontaneously Form Twisted and Helical Ribbon Structures. J Phys Chem Lett 2017; 8:2170-2174. [PMID: 28453939 DOI: 10.1021/acs.jpclett.7b00745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly of peptide amphiphiles (PAs) has been an active research area as the assemblies can be programmed into variously shaped nanostructures. Although cylindrical micelles are common structures, gold-binding peptide conjugates can self-assemble into chiral nanofibers with single or double helices. When gold nanoparticles bind to the helices, the resulting chiral nanoparticle assemblies have a collective plasmonic circular dichroism signal that can serve as nanoscale circular polarizers or chiroptical sensors. A better atomic-level understanding of the factors which lead to helical PA assemblies is therefore of significant importance. In this study we show that all-atom molecular dynamics simulations can describe the spontaneous structural transformation from a planar assembly of PAs to a twisted assembly or to a helical ribbon. The twist angle and the helical diameter calculated from the simulations closely match the experimental results, with the oxidation of a single Met residue in each PA leading to a change from bilayer to monolayer assemblies with significantly different ribbon properties. A secondary structure analysis shows how a combination of β-sheet formation near the hydrophobic core of the micelle and PPII structures from proline-rich C-terminus regions favors helix formation. The simulations presented here demonstrate the capability of predicting self-assembly in chiral structures, protocols that can easily be applied to the assembly of other amphiphilic molecules.
Collapse
Affiliation(s)
- Cheng-Tsung Lai
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Wang W, Anderson CF, Wang Z, Wu W, Cui H, Liu CJ. Peptide-templated noble metal catalysts: syntheses and applications. Chem Sci 2017; 8:3310-3324. [PMID: 28507701 PMCID: PMC5416928 DOI: 10.1039/c7sc00069c] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023] Open
Abstract
Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Zongyuan Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| | - Wei Wu
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Chang-Jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| |
Collapse
|
23
|
Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, van der Wel PCA, Rosi NL. Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity. J Am Chem Soc 2016; 138:13655-13663. [PMID: 27726354 PMCID: PMC5388601 DOI: 10.1021/jacs.6b07322] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chiral nanoparticle assemblies are an interesting class of materials whose chiroptical properties make them attractive for a variety of applications. Here, C18-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF) is shown to direct the assembly of single-helical gold nanoparticle superstructures that exhibit exceptionally strong chiroptical activity at the plasmon frequency with absolute g-factor values up to 0.04. Transmission electron microscopy (TEM) and cryogenic electron tomography (cryo-ET) results indicate that the single helices have a periodic pitch of approximately 100 nm and consist of oblong gold nanoparticles. The morphology and assembled structure of C18-(PEPAuM-ox)2 are studied using TEM, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. TEM and AFM reveal that C18-(PEPAuM-ox)2 assembles into linear amyloid-like 1D helical ribbons having structural parameters that correlate to those of the single-helical gold nanoparticle superstructures. FTIR, CD, XRD, and ssNMR indicate the presence of cross-β and polyproline II secondary structures. A molecular assembly model is presented that takes into account all experimental observations and that supports the single-helical nanoparticle assembly architecture. This model provides the basis for the design of future nanoparticle assemblies having programmable structures and properties.
Collapse
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer C. Boatz
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Xianting Wang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Patrick C. A. van der Wel
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
24
|
Ou YC, Webb J, Faley S, Shae D, Talbert EM, Lin S, Cutright CC, Wilson JT, Bellan LM, Bardhan R. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer. ACS OMEGA 2016; 1:234-243. [PMID: 27656689 PMCID: PMC5026460 DOI: 10.1021/acsomega.6b00079] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/11/2016] [Indexed: 05/18/2023]
Abstract
In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.
Collapse
Affiliation(s)
- Yu-Chuan Ou
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Joseph
A. Webb
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Shannon Faley
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Daniel Shae
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Eric M. Talbert
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Sharon Lin
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Camden C. Cutright
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Leon M. Bellan
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Rizia Bardhan
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| |
Collapse
|