1
|
Hu J, Wang Z, Jiang D, Gao M, Dong L, Liu M, Song Z. pH-induced changes in IgE molecules measured by atomic force microscopy. Microsc Res Tech 2024; 87:2875-2883. [PMID: 39044615 DOI: 10.1002/jemt.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
The environment surrounding proteins is tightly linked to its dynamics, which can significantly influence the conformation of proteins. This study focused on the effect of pH conditions on the ultrastructure of Immunoglobulin E (IgE) molecules. Herein, the morphology, height, and area of IgE molecules incubated at different pH were imaged by atomic force microscopy (AFM), and the law of IgE changes induced by pH value was explored. The experiment results indicated that the morphology, height and area of IgE molecules are pH dependent and highly sensitive. In particular, IgE molecules were more likely to present small-sized ellipsoids under acidic conditions, while IgE molecules tend to aggregate into large-sized flower-like structures under alkaline conditions. In addition, it was found that the height of IgE first decreased and then increased with the increase of pH, while the area of IgE increased with the increase of pH. This work provides valuable information for further study of IgE, and the methodological approach used in this study is expected to developed into AFM to investigate the changes of IgE molecules mediated by other physical and chemical factors. RESEARCH HIGHLIGHTS: The ultrastructure of IgE molecules is pH dependent and highly sensitive. IgE molecules were tend to present small-sized ellipsoids under acidic pH. Alkaline pH drives IgE self-assembly into flower-like aggregates.
Collapse
Affiliation(s)
- Jing Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Dayong Jiang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
| | - Mingyan Gao
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Litong Dong
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Mengnan Liu
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Abstract
Single-cell proteomics is a promising field to provide direct yet comprehensive molecular insights into cellular functions without averaging effects. Here, we address a grand technical challenge impeding the maturation of single-cell proteomics─protein adsorption loss (PAL). Even though widely known, there is currently no quantitation on how profoundly and selectively PAL has affected single-cell proteomics. Therefore, the mitigations to this challenge have been generic, and their efficacy was only evaluated by the size of the resolved proteome with no specificity on individual proteins. We use the existing knowledge of PAL, protein expression, and the typical surface area used in single-cell proteomics to discuss the severity of protein loss. We also summarize the current solutions to this challenge and briefly review the available methods to characterize the physical and chemical properties of protein surface adsorption. By citing successful strategies in single-cell genomics for measurement errors in individual transcripts, we pinpoint the urgency to benchmark PAL at the proteome scale with individual protein resolution. Finally, orthogonal single-cell proteomic techniques that have the potential to cross validate PAL are proposed. We hope these efforts can promote the fruition of single-cell proteomics in the near future.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Sharwan Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
3
|
Lefebvre G, Maze A, Alvarez-Palencia Jimenez R, Bruckert F, Filipe V, Huille S, Weidenhaupt M. Surfactant Protection Efficacy at Surfaces Varies with the Nature of Hydrophobic Materials. Pharm Res 2021; 38:2157-2166. [PMID: 34904200 DOI: 10.1007/s11095-021-03133-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Monoclonal antibodies are in contact with many different materials throughout their life cycle from production to patient administration. Plastic surfaces are commonly found in single use bags, syringes, perfusion bags and tubing and their hydrophobic nature makes them particularly prone for adsorption of therapeutic proteins. The addition of surfactants in therapeutic formulations aims at minimizing surface and interface adsorption of the active molecules. However, their protection efficacy related to the nature of the plastic material is still poorly investigated. METHODS We use real-time surface-sensitive techniques and immunosorbent assays, to quantify surfactant and monoclonal antibody adsorption on hydrophobic model surfaces and different plastic polymers to analyse the effect of material surface properties on the level of surfactant protection. RESULTS We show that Polysorbate 80 protects monoclonal antibodies significantly better from adsorption on a polystyrene surface than on a hexadecane self-assembled monolayer, used as a model surface with similar hydrophobicity. This enhanced protective effect on polystyrene is observed for different antibodies and also other surfactants, and its extent depends on the surfactant concentration for a given antibody concentration. A comparative adsorption study allows ranking different in-use plastics and highlights the dependence of Polysorbate 80 protection efficacy on the nature of the plastic material. CONCLUSION This study demonstrates that, beyond hydrophobicity, the nature of plastic polymer surfaces affects surfactant adsorption and thereby impacts their protection efficacy in therapeutic antibody formulations.
Collapse
Affiliation(s)
- Guillaume Lefebvre
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France.,Sanofi, 94400, Vitry-sur-Seine, France
| | - Antoine Maze
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France
| | - Rosa Alvarez-Palencia Jimenez
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France.,Sanofi, 94400, Vitry-sur-Seine, France
| | - Franz Bruckert
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France
| | | | | | - Marianne Weidenhaupt
- Univ. Grenoble Alpes, CNRS, Grenoble INP* (*Institute of Engineering) LMGP, 38000, Grenoble, France. .,Phelma Minatec LMGP, 3 parvis Louis Neel, CS 50257, F- 38016, Grenoble cedex 1, France.
| |
Collapse
|
4
|
Roffi K, Li L, Pantazis J. Adsorbed protein film on pump surfaces leads to particle formation during fill-finish manufacturing. Biotechnol Bioeng 2021; 118:2947-2957. [PMID: 33913509 DOI: 10.1002/bit.27801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/11/2023]
Abstract
During fill-finish manufacturing, therapeutic proteins may aggregate or form subvisible particles in response to the physical stresses encountered within filling pumps. Understanding and quantitating this risk is important since filling may be the last unit operation before the patient receives their dose. We studied particle formation from lab-scale to manufacturing-scale using sensitive and robust protein formulations. Filling experiments with a ceramic rotary piston pump were integrated with a rinse-stripping method to investigate the relationship between protein adsorption and particle formation. For a sensitive protein, multilayer film formation on the piston surface correlated with high levels of subvisible particles in solution. For a robust protein formulation, adsorption and subvisible particle formation were minimal. These results support an aggregation mechanism that is initiated by adsorption to pump surfaces and propagated by mechanical and/or hydrodynamic disruption of the film. The elemental analysis confirmed that ceramic wear debris remained at trace levels and did not contribute appreciably to protein aggregation.
Collapse
Affiliation(s)
- Kirk Roffi
- Pfizer, Pharmaceutical Research and Development, 1 Burtt Rd, Andover, Massachusetts, USA
| | - Li Li
- Pfizer, Pharmaceutical Research and Development, 1 Burtt Rd, Andover, Massachusetts, USA
| | - Jacob Pantazis
- University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|
5
|
Bolivar JM, Nidetzky B. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140333. [PMID: 31778816 DOI: 10.1016/j.bbapap.2019.140333] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
The integration of enzymes with solid materials is important in many biotechnological applications, including the use of immobilized enzymes for biocatalytic synthesis. The development of functional enzyme-material composites is restrained by the lack of molecular-level insight into the behavior of enzymes in confined, surface-near environments. Here, we review recent advances in surface-sensitive spectroscopic techniques that push boundaries for the determination of enzyme structure and orientation at the solid-liquid interface. We discuss recent evidence from single-molecule studies showing that analyses sensitive to the temporal and spatial heterogeneities in immobilized enzymes can succeed in disentangling the effects of conformational stability and active-site accessibility on activity. Different immobilization methods involve distinct trade-off between these effects, thus emphasizing the need for a holistic (systems) view of immobilized enzymes for the rational development of practical biocatalysts.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria; Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
6
|
Sharma I, Pattanayek SK. Interrelation of Elasticity, Isotherm of Adsorbed Proteins, and its Subsequent Displacement by a Surfactant. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Indu Sharma
- Department of Chemical Engineering Indian Institute of Technology, New Delhi 110016, India
| | - Sudip K. Pattanayek
- Department of Chemical Engineering Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
7
|
Ranade AV, Mukhtarov R, An Liu KJ, Behrner MA, Sun B. Characterization of Sample Loss Caused by Competitive Adsorption of Proteins in Vials Using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4224-4232. [PMID: 30813715 DOI: 10.1021/acs.langmuir.8b04281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sample loss caused by competitive protein adsorption on solid surfaces from complex samples remains to be a major hurdle in sensitive analyses of proteins. No label-free techniques can easily quantify individual proteins adsorbed on irregular surfaces of Eppendorf vials or Falcon tubes, which are commonly used to contain complex biological samples. Multiplexed characterization of such adsorption by different proteins is technically challenging. Herein, we developed a direct protein analysis based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the characterization of sample loss occurred on the curved surface with limited area. Using this simple and easily accessible method, we discovered the effect of ethylenediaminetetraacetic acid on surface adsorption of different milk proteins, specifically an augmented loss of milk proteins in low-binding sample vials. In this study, we also identified severe biases of silver staining and established proteomics-based mapping of protein distribution in biological samples for absolute quantification of competitive protein adsorption on irregular surfaces.
Collapse
|
8
|
|
9
|
Kienle DF, Falatach RM, Kaar JL, Schwartz DK. Correlating Structural and Functional Heterogeneity of Immobilized Enzymes. ACS NANO 2018; 12:8091-8103. [PMID: 30067333 DOI: 10.1021/acsnano.8b02956] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many nanobiotechnology applications rely on stable and efficient integration of functional biomacromolecules with synthetic nanomaterials. Unfortunately, the reasons for the ubiquitous loss of activity of immobilized enzymes remain poorly understood due to the difficulty in distinguishing between distinct molecular-level mechanisms. Here, we employ complementary single-molecule fluorescence methods that independently measure the impact of immobilization on the structure and function ( i. e., substrate binding kinetics) of nitroreductase (NfsB). Stochastic statistical modeling methods were used to unambiguously quantify the effects of immobilized NfsB structural dynamics on function, allowing us to explicitly separate effects due to conformation and accessibility. Interestingly, we found that nonspecifically tethered NfsB exhibited enhanced stability compared to site-specifically tethered NfsB; however, the folded state of site-specifically tethered NfsB had faster substrate binding rates, suggesting improved active site accessibility. This demonstrated an unexpected intrinsic trade-off associated with competing bioconjugation methods, suggesting that it may be necessary to balance conformational stability versus active site accessibility. This nuanced view of the impact of immobilization will facilitate a rational approach to the integration of enzymes with synthetic nanomaterials.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
10
|
Lee MCG, Sun B. Quantitation of nonspecific protein adsorption at solid–liquid interfaces for single-cell proteomics. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein nonspecific adsorption that occurred at the solid–liquid interface has been subjected to intense physical and chemical characterizations due to its crucial role in a wide range of applications, including food and pharmaceutical industries, medical implants, biosensing, and so on. Protein-adsorption caused sample loss has largely hindered the studies of single-cell proteomics; the prevention of such loss requires the understanding of protein–surface adsorption at the proteome level, in which the competitive adsorption of thousands and millions of proteins with vast dynamic range occurs. To this end, we feel the necessity to review current methodologies on their potentials to characterize — more specifically to quantify — the proteome-wide adsorption. We hope this effort can help advancing single-cell proteomics and trace proteomics.
Collapse
Affiliation(s)
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
11
|
Akers PW, Dingley AJ, Swift S, Nelson ARJ, Martin J, McGillivray DJ. Using Neutron Reflectometry to Characterize Antimicrobial Protein Surface Coatings. J Phys Chem B 2017; 121:5908-5916. [DOI: 10.1021/acs.jpcb.7b02886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter W. Akers
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew J. Dingley
- Institute of Complex
Systems: Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Simon Swift
- Department
of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew R. J. Nelson
- Australian
Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South
Wales 2232, Australia
| | - Julie Martin
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Duncan J. McGillivray
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
12
|
Jelińska A, Zagożdżon A, Górecki M, Wisniewska A, Frelek J, Holyst R. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis. PLoS One 2017; 12:e0175838. [PMID: 28426809 PMCID: PMC5398553 DOI: 10.1371/journal.pone.0175838] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/01/2017] [Indexed: 11/29/2022] Open
Abstract
We showed that the Taylor Dispersion Analysis (TDA) is a fast and easy to use method for the study of denaturation proteins. We applied TDA to study denaturation of β-lactoglobulin, transferrin, and human insulin by anionic surfactant sodium dodecyl sulfate (SDS). A series of measurements at constant protein concentration (for transferrin was 1.9 x 10−5 M, for β- lactoglobulin was 7.6 x 10−5 M, and for insulin was 1.2 x 10−4 M) and varying SDS concentrations were carried out in the phosphate-buffered saline (PBS). The structural changes were analyzed based on the diffusion coefficients of the complexes formed at various surfactant concentrations. The concentration of surfactant was varied in the range from 1.2 x 10−4 M to 8.7 x 10−2 M. We determined the minimum concentration of the surfactant necessary to change the native conformation of the proteins. The minimal concentration of SDS for β-lactoglobulin and transferrin was 4.3 x 10−4 M and for insulin 2.3 x 10−4 M. To evaluate the TDA as a novel method for studying denaturation of proteins we also applied other methods i.e. electronic circular dichroism (ECD) and dynamic light scattering (DLS) to study the same phenomenon. The results obtained using these methods were in agreement with the results from TDA.
Collapse
Affiliation(s)
- Aldona Jelińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Zagożdżon
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jadwiga Frelek
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
13
|
Helbing C, Stoeßel R, Hering DA, Arras MML, Bossert J, Jandt KD. pH-Dependent Ordered Fibrinogen Adsorption on Polyethylene Single Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11868-11877. [PMID: 27775351 DOI: 10.1021/acs.langmuir.6b03110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured surfaces have the potential to influence the assembly as well as the orientation of adsorbed proteins and may, thus, strongly influence the biomaterials' performance. For the class of polymeric (bio)materials a reproducible and well-characterized nanostructure is the ordered chain folded surface of a polyethylene single crystal (PE-SC). We tested the hypothesis that the trinodal-rod-shaped protein human plasma fibrinogen (HPF) adsorbs on the (001) surface of PE-SCs along specific crystallographic directions. The PE-SC samples were prepared by isothermal crystallization in dilute solution and characterized by atomic force microscopy (AFM) before as well as after HPF adsorption at different concentrations and pH values. At a physiological pH of 7.4, connected HPF molecules, or e.g., fibrils, fibril networks, or sponge-like structures, were observed on PE-SC surfaces that featured no preferential orientation. The observation of these nonoriented multiprotein assemblies was explained by predominant protein-protein interactions and limited surface diffusion. However, at an increased pH of 9.2, single HPF molecules, e.g., spherical-shaped and trinodal-rod-shaped HPF molecules as well as agglomerates, were observed on the PE-SC surface. The presence of single HPF molecules at increased pH was explained by decreased protein-protein interactions. These single trinodal-rod-shaped HPF molecules oriented preferentially along crystallographic [100] and [010] directions on the PE-SC surface which was explained by an increased amount of intermolecular bonds along these crystallographic directions with increased surface atom density. The study established that HPF molecules can align on chemically homogeneous surface topographies one order of magnitude smaller than the dimension of the protein. This advances the understanding of how to control the assembly and orientation of proteins on nanostructured polymer surfaces. Controlled protein adsorption is a crucial key to improve the surface functionality of future implants and biosensors.
Collapse
Affiliation(s)
- Christian Helbing
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Robert Stoeßel
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Dominik A Hering
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Matthias M L Arras
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Humboldtstraße 10, 07743 Jena, Germany
| |
Collapse
|