1
|
Chen H, Chen J, Liu Y, Li B, Li H, Zhang X, Lv C, Dong H. Wearable Dual-Signal NH 3 Sensor with High Sensitivity for Non-invasive Diagnosis of Chronic Kidney Disease. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3420-3430. [PMID: 36880227 DOI: 10.1021/acs.langmuir.2c03347] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
NH3 gas in human exhaled breath contains abundant physiological information related to human health, especially chronic kidney disease (CKD). Unfortunately, up to now, most wearable NH3 sensors show inevitable defects (low sensitivity, easy to be interfered by the environment, etc.), which may lead to misdiagnosis of CKD. To solve the above dilemma, a nanoporous, heterogeneous, and dual-signal (optical and electrical) wearable NH3 sensor mask is developed successfully. More specifically, a polyacrylonitrile/bromocresol green (PAN/BCG) nanofiber film as a visual NH3 sensor and a polyacrylonitrile/polyaniline/reduced graphene oxide (PAN/PANI/rGO) nanofiber film as a resistive NH3 sensor are constructed. Due to the high specific surface area and abundant NH3 binding sites of these two nanofiber films, they exhibit good NH3 sensing performance. However, although the visual NH3 sensor (PAN/BCG nanofiber film) is simple without the need of any detecting facilities and quite stable when temperature and humidity change, it shows poor sensitivity and resolution. In comparison, the resistive NH3 sensor (PAN/PANI/rGO nanofiber film) is of high sensitivity, fast response, and good resolution, but its electrical signal is easily interfered by the external environment (such as humidity, temperature, etc.). Considering that the sensing principles between a visual NH3 sensor and resistive NH3 sensor are significantly different, a wearable dual-signal NH3 sensor containing both a visual NH3 sensor and resistive NH3 sensor is further explored. Our data prove that the two sensing signals in this dual-signal NH3 sensor mask can not only work well without interference with each other but also complement each other to improve the sensing accuracy, indicating its potential application in non-invasive diagnosis of CKD.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Junlin Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Bingrui Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Haofei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xing Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chuhan Lv
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
2
|
Al-Mur BA, Ansari MO. Silver Anchored Polyaniline@Molybdenum Disulfide Nanocomposite (Ag/Pani@MoS 2) for Highly Efficient Ammonia and Methanol Sensing under Ambient Conditions: A Mechanistic Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:828. [PMID: 36903706 PMCID: PMC10005692 DOI: 10.3390/nano13050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We report the synthesis of silver anchored and para toluene sulfonic acid (pTSA) doped polyaniline/molybdenum disulfide nanocomposite (pTSA/Ag-Pani@MoS2) for highly reproducible room temperature detection of ammonia and methanol. Pani@MoS2 was synthesized by in situ polymerization of aniline in the presence of MoS2 nanosheets. The chemical reduction of AgNO3 in the presence of Pani@MoS2 led to the anchoring of Ag to Pani@MoS2 and finally doping with pTSA produced highly conductive pTSA/Ag-Pani@MoS2. Morphological analysis showed Pani-coated MoS2 along with the observation of Ag spheres and tubes well anchored to the surface. Structural characterization by X-ray diffraction and X-ray photon spectroscopy showed peaks corresponding to Pani, MoS2, and Ag. The DC electrical conductivity of annealed Pani was 11.2 and it increased to 14.4 in Pani@MoS2 and finally to 16.1 S/cm with the loading of Ag. The high conductivity of ternary pTSA/Ag-Pani@MoS2 is due to Pani and MoS2 π-π* interactions, conductive Ag, as well as the anionic dopant. The pTSA/Ag-Pani@MoS2 also showed better cyclic and isothermal electrical conductivity retention than Pani and Pani@MoS2, owing to the higher conductivity and stability of its constituents. The ammonia and methanol sensing response of pTSA/Ag-Pani@MoS2 showed better sensitivity and reproducibility than Pani@MoS2 owing to the higher conductivity and surface area of the former. Finally, a sensing mechanism involving chemisorption/desorption and electrical compensation is proposed.
Collapse
Affiliation(s)
- Bandar A. Al-Mur
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
3
|
Wang TH, Lin CY, Huang YC, Li CY. Facile electrosynthesis of polyaniline|gold nanoparticle core-shell nanofiber for efficient electrocatalytic CO2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Mesoporous cellulose nanofibers-interlaced PEDOT:PSS hybrids for chemiresistive ammonia detection. Mikrochim Acta 2022; 189:308. [PMID: 35916935 DOI: 10.1007/s00604-022-05414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
Abstract
Chemiresistive ammonia (NH3) detection at room temperature is highly desired due to the unique merits of easy miniaturization, low cost, and minor energy consumption especially for portable and wearable electronics. In this regard, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) has sparked considerable attention due to the benign room-temperature conductivity and environmental stability, but it is undesirably impeded by limited sensitivity and sluggish reaction kinetics. To overcome these, we incorporated cellulose nanofibers (CNF) into PEDOT:PSS via a facile blending. The constituent-optimized composite sensor displayed sensitive (sensitivity of ∼7.46%/ppm in the range of 0.2-3 ppm), selective, and stable NH3 sensing at 25 °C at 55% RH, with higher response and less baseline drift than pure PEDOT:PSS counterparts. Additionally, the response/recovery times (4.9 s/5.2 s toward 1 ppm NH3) ranked the best cases of conducting polymers based NH3 sensors. The humidity involved more than twofold response enhancement indicated a huge potential in exhaled breath monitoring. Furthermore, we observed an excellent flexible NH3-sensing performance with bending-tolerant features. This work provides an alternative strategy for trace NH3 sensing with low power consumption, superfast reaction, and high sensitivity.
Collapse
|
5
|
Electroconductive green metal‐polyaniline nanocomposites: synthesis and application in sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
“Electro-dissolution” of gold nanoclusters for constructing ammonia sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Gold nanostar as an ultrasensitive colorimetric probe for picomolar detection of lead ion. Anal Chim Acta 2021; 1160:338380. [PMID: 33894959 DOI: 10.1016/j.aca.2021.338380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
The sensitivity for analytes of interest is vital for environment protection and food safety. Here, we propose an extremely sensitive assay toward Pb2+ by using gold nanostars (GNSs) as probes based on the catalytic activity of Pb on etching gold atoms after being reduced in the presence of 2-mercaptoethanol (2-ME) and sodium thiosulfate. GNSs were prepared by using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid as both the reducing and capping agents, enabling high stability and sensitivity for quantitation of Pb2+. Upon increasing Pb2+ concentration over the range of 0-10 μM, GNS solution color changed from greenish-blue to blue to purple to red, and eventually to colorless. The color change can be distinguished by naked eye at the Pb2+ concentration as low as 200 pM. Through monitoring longitudinal localized surface plasmon of GNSs, Pb2+ could be detected with a limit of detection of 1.5 pM, and the working range is 2 pM-1 μM. The ultra-high sensitivity of our assay stems from the high catalysis of Pb on etching gold on tips and branches in the presence of 2-ME and sodium thiosulfate, leading to the shape deformation to spherical gold nanoparticle and the corresponding significant changes in their optical properties. The assay provides high selectivity of Pb2+ over the tested interfering metal ions like Cu2+. With high sensitivity and selectivity, the assay was efficiently validated by analyzing water samples and monitoring the migration of Pb2+ from the tested container to water.
Collapse
|
8
|
Donoso-González O, Lodeiro L, Aliaga ÁE, Laguna-Bercero MA, Bollo S, Kogan MJ, Yutronic N, Sierpe R. Functionalization of Gold Nanostars with Cationic β-Cyclodextrin-Based Polymer for Drug Co-Loading and SERS Monitoring. Pharmaceutics 2021; 13:pharmaceutics13020261. [PMID: 33671975 PMCID: PMC7919026 DOI: 10.3390/pharmaceutics13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic β-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV–VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.
Collapse
Affiliation(s)
- Orlando Donoso-González
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Lucas Lodeiro
- Laboratorio de Química teórica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Álvaro E. Aliaga
- Laboratorio de Espectroscopía Vibracional, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Miguel A. Laguna-Bercero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Soledad Bollo
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
- Laboratorio de Biosensores, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile
| | - Marcelo J. Kogan
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Nicolás Yutronic
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Correspondence: (N.Y.); (R.S.)
| | - Rodrigo Sierpe
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
- Laboratorio de Biosensores, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile
- Correspondence: (N.Y.); (R.S.)
| |
Collapse
|
9
|
K N, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 2021; 11:5659-5697. [PMID: 35686160 PMCID: PMC9133880 DOI: 10.1039/d0ra07800j] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
Conducting polymers are extensively studied due to their outstanding properties, including tunable electrical property, optical and high mechanical properties, easy synthesis and effortless fabrication and high environmental stability over conventional inorganic materials. Although conducting polymers have a lot of limitations in their pristine form, hybridization with other materials overcomes these limitations. The synergetic effects of conducting polymer composites give them wide applications in electrical, electronics and optoelectronic fields. An in-depth analysis of composites of conducting polymers with carbonaceous materials, metal oxides, transition metals and transition metal dichalcogenides etc. is used to study them effectively. Here in this review we seek to describe the transport models which help to explain the conduction mechanism, relevant synthesis approaches, and physical properties, including electrical, optical and mechanical properties. Recent developments in their applications in the fields of energy storage, photocatalysis, anti-corrosion coatings, biomedical applications and sensing applications are also explained. Structural properties play an important role in the performance of the composites.
Collapse
Affiliation(s)
- Namsheer K
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Jakkasandra, Ramanagaram Bangalore-562112 India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Jakkasandra, Ramanagaram Bangalore-562112 India
| |
Collapse
|
10
|
|
11
|
Zhang W, Li G, She C, Liu A, Cheng J, Li H, Liu S, Jing C, Cheng Y, Chu J. High performance tube sensor based on PANI/Eu 3+ nanofiber for low-volume NH 3 detection. Anal Chim Acta 2019; 1093:115-122. [PMID: 31735204 DOI: 10.1016/j.aca.2019.09.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/15/2022]
Abstract
A novel polyaniline (PANI)/Eu3+ nanofiber sensing film was prepared in the presence of Eu(NO3)3 which serves as structure-directed agent. The morphological, component, crystallinity and electrochemical properties were carried out by using Scanning Electron Microscope (SEM), Energy-Dispersive X-ray (EDX), Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. The results indicated the nanofiber-like network with porous structure appeared in the PANI embedded by Eu3+ ions, thereby leading to large specific surface area. Furthermore, the PANI/Eu3+ nanofibers were grown onto the inner wall of capillary glass to form the tube sensor. By the sensing measurements, this tube sensor enabled the detection of low-volume (0.3 mL) NH3 for response 435% at concentration of 0.25 ppm with a short response time (5 s) and recovery time (5 s), and the performances of reproducibility and selectivity were also excellent. The above results demonstrated the potential application of PANI/Eu3+ tube sensor for low-volume NH3 gas.
Collapse
Affiliation(s)
- Wenqian Zhang
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guishun Li
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Changkun She
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Aiyun Liu
- Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jianing Cheng
- Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Hongkai Li
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shaohua Liu
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Ya Cheng
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junhao Chu
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education; Key Laboratory of Polar Materials and Devices (Ministry of Education); The Extreme Optoelectromechanics Laboratory; Department of Materials; School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
12
|
Ganganboina AB, Doong RA. Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen. Sci Rep 2019; 9:7214. [PMID: 31076624 PMCID: PMC6510894 DOI: 10.1038/s41598-019-43740-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023] Open
Abstract
A label-free impedimetric immunosensor based on N, S-graphene quantum dots@Au-polyaniline (N, S-GQDs@Au-PANI) nanowires was fabricated for the quantitative detection of carcinoembryonic antigen (CEA). The N, S-GQDs and Au-PANI were synthesized by a simple hydrothermal pyrolysis and interfacial polymerization, respectively. Subsequently, 2-9 nm N, S-GQDs are successfully decorated onto 30-50 nm Au-PANI nanowires by Au-thiol linkage to serve as the bifunctional probe for amplifying the electrochemical activity as well as anchoring anti-CEA. The N, S-GQDs@Au-PANI nanowires are excellent conducting materials to accelerate the electron transfer, while the formation of CEA antibody-antigen bioconjugates after the addition of CEA significantly increase the charge transfer resistance, and subsequently provides a highly stable and label-free immunoassay platform for the impedimetric detection of CEA. The label-free immunosensor exhibits a wide linear range from 0.5 to 1000 ng mL-1 with a low detection limit of 0.01 ng mL-1. The N, S-GQDs@Au-PANI based immunosensor also shows high selectivity and stability over other cancer makers and amino acids. Moreover, this promising platform is successfully applied to the detection of CEA in human serum samples with excellent recovery of (96.0 ± 2.6)-(103 ± 3.8)%. These results clearly demonstrate a newly developed highly efficient and label-free impedimetric immunosensor for the detection of CEA using N, S-GQDs@Au-PANI nanowires as the biosensing probe, which can pave the gateway for the fabrication of high performance and robust impedimetric immunosensor to detect cancer makers in early stage of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ruey-An Doong
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan.
| |
Collapse
|
13
|
Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Khambalkar V, Birajdar S, Adhyapak P, Kulkarni S. Nanocomposite of polypyrrol and silica rods-gold nanoparticles core-shell as an ammonia sensor. NANOTECHNOLOGY 2019; 30:105501. [PMID: 30540977 DOI: 10.1088/1361-6528/aaf83d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ammonia is widely needed in the chemical industry as well as in fertilizers for agriculture. However, in small as well as large quantities, it is not only hazardous for human health but also for our ecosystem. Therefore, ammonia sensing at low concentration with high sensitivity, selectivity and low response time as well as recovery time is important. Here, various nanosensors are fabricated using gold nanoparticles (∼15 nm), silica-gold nanoparticles coreshell particles and coreshell particles embedded in polypyrrol. Comparisons with bare polypyrrol and coreshell particles are also made. In fact, two types of coreshell particles with rod (∼300 nm × 2 μm) shape and spheres (200 nm) of silica were used to anchor gold nanoparticles on them. A comparison showed that silica-gold core-shell particle with silica rods had the highest sensitivity (∼166% @ 130 ppm) amongst all. The sensor is simple to operate (only resistance change is measured), requires no heater as the sensing occurs at room temperature, and showed no response, except for ammonia, to other gases or humidity. It also has a low response time (4 s) and recovery time (10 s) at the lowest (10 ppm) ammonia concentration measured here. Thus, a simple, economical ammonia sensor has been demonstrated here.
Collapse
Affiliation(s)
- Vaibhav Khambalkar
- Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pune-411008, India
| | | | | | | |
Collapse
|
15
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Birajdar SN, Hebalkar NY, Pardeshi SK, Kulkarni SK, Adhyapak PV. Ruthenium-decorated vanadium pentoxide for room temperature ammonia sensing. RSC Adv 2019; 9:28735-28745. [PMID: 35529636 PMCID: PMC9071197 DOI: 10.1039/c9ra04382a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/31/2019] [Indexed: 12/31/2022] Open
Abstract
Layer structured vanadium pentoxide (V2O5) microparticles were synthesized hydrothermally and successfully decorated by a facile wet chemical route, with ∼10–20 nm sized ruthenium nanoparticles. Both V2O5 and ruthenium nanoparticle decorated V2O5 (1%Ru@V2O5) were investigated for their suitability as resistive gas sensors. It was found that the 1%Ru@V2O5 sample showed very high selectivity and sensitivity towards ammonia vapors. The sensitivity measurements were carried out at 30 °C (room temperature), 50 °C and 100 °C. The best results were obtained at room temperature for 1%Ru@V2O5. Remarkably as short a response time as 0.52 s @ 130 ppm and as low as 9.39 s @ 10 ppm recovery time at room temperature along with high selectivity towards many gases and vapors have been noted in the 10 to 130 ppm ammonia concentration range. Short response and recovery time, high reproducibility, selectivity and room temperature operation are the main attributes of the 1%Ru@V2O5 sensor. Higher sensitivity of 1%Ru@V2O5 compared to V2O5 has been explained and is due to dissociation of atmospheric water molecules on 1%Ru@V2O5 as compared to bare V2O5 which makes hydrogen atoms available on Brønsted sites for ammonia adsorption and sensing. The presence of ruthenium with a thin layer of oxide is clear from X-ray photoelectron spectroscopy and that of water molecules from Fourier transform infrared spectroscopy. Layer structured vanadium pentoxide (V2O5) microparticles were synthesized hydrothermally and successfully decorated by a facile wet chemical route, with ∼10–20 nm sized ruthenium nanoparticles.![]()
Collapse
Affiliation(s)
| | - Neha Y. Hebalkar
- International Advanced Research Centre for Powder Metallurgy and New Materials
- Hyderabad-500005
- India
| | | | | | - Parag V. Adhyapak
- Centre for Materials for Electronics Technology (C-MET)
- Pune-411008
- India
| |
Collapse
|
17
|
Liu YN, Jin LN, Wang HT, Kang XH, Bian SW. Fabrication of three-dimensional composite textile electrodes by metal-organic framework, zinc oxide, graphene and polyaniline for all-solid-state supercapacitors. J Colloid Interface Sci 2018; 530:29-36. [PMID: 29960905 DOI: 10.1016/j.jcis.2018.06.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Abstract
Textile electrode materials have attracted intense attention in the flexible supercapacitor field due to their flexibility, light weight, hierarchical porosity and mechanical robustness. However, their electrochemical performance is not good due to the low conductivity, ineffective ion diffusion and small electroactive surface area. In this study, a three-dimensional (3D) textile electrode material was constructed by utilizing ZIF-8 (Zeolitic Imidazolate Framework), metal oxides, conductive polymers and graphene sheets. The polyaniline/ZnO/ZIF-8/graphene/polyester textile electrode exhibited good electrochemical performance with a high areal capacitance of 1.378 F/cm2 at 1 mA/cm2 and high stability under different mechanical deformations. A flexible all-solid-state symmetric supercapacitor device was further fabricated, which can provide a high energy density of 235 μWh/cm3 at a power density of 1542 μW/cm3.
Collapse
Affiliation(s)
- Ya-Nan Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Li-Na Jin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Hai-Tao Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiao-Hui Kang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shao-Wei Bian
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
18
|
Zhang YM, Li YF, Zhong KP, Qu WJ, Chen XP, Yao H, Wei TB, Lin Q. A novel pillar[5]arene-based supramolecular organic framework gel to achieve an ultrasensitive response by introducing the competition of cationπ and ππ interactions. SOFT MATTER 2018; 14:3624-3631. [PMID: 29687823 DOI: 10.1039/c8sm00426a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasensitive response properties are an intriguing concern for stimuli-responsive materials. Herein, we report a novel method to achieve an ultrasensitive response by introducing the competition of cationπ and ππ interactions into a pillar[5]arene-based supramolecular organic framework (SOF-AMP). SOF-AMP was constructed with a novel bis-naphthalimide functionalized pillar[5]arene, which was able to form a stable supramolecular gel (SOF-AMP-G) in cyclohexanol. Interestingly, SOF-AMP-G shows an ultrasensitive response to Fe3+ through the competition of cationπ and ππ interactions. Meanwhile, the Fe3+ coordinated SOF (MSOF-Fe) shows an ultrasensitive response to H2PO4-. SOF-AMP-G displayed yellow fluorescence whereas, after the addition of 0.5 equiv. of Fe3+ to SOF-AMP-G, the yellow fluorescence was quenched. The detection limit of SOF-AMP-G for Fe3+ is 7.54 × 10-9 M. More interestingly, the Fe3+ coordinated SOF gel (MSOF-Fe-G) could sense H2PO4- with a fluorescence "turn-on". The detection limit of MSOF-Fe-G for H2PO4- is 4.21 × 10-9 M. Simultaneously, the Fe3+ and H2PO4- responsive thin films based on these SOF gels were prepared. Moreover, these SOF gels could be used as ultrasensitive ion sensors, fluorescent display materials and sensitive logic gates.
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhou P, Li J, Yang W, Zhu L, Tang H. Polyaniline Nanofibers: Their Amphiphilicity and Uses for Pickering Emulsions and On-Demand Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2841-2848. [PMID: 29406720 DOI: 10.1021/acs.langmuir.7b04353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The wetting property of nanomaterials is of great importance to both fundamental understanding and potential applications. However, the study on the intrinsic wetting property of nanomaterials is interfered by organic capping agents, which are often used to lower the surface energy of nanomaterials and avoid their irreversible agglomeration. In this work, the wetting property of the nanostructured polyaniline that requires no organic capping agents is investigated. Compared to hydrophilic granular particulates, polyaniline nanofibers are amphiphilic and have an excellent capability of creating Pickering emulsions at a wide range of pH. It is suggested that polyaniline nanofibers can be easily wetted by water and oil. Furthermore, the amphiphilic polyaniline nanofibers as building blocks can be used to construct filtration membranes with a small pore size. The wetting layer of the continuous phase of emulsions in the porous nanochannels efficiently prevents the permeation of the dispersed phase, realizing high-efficiency on-demand emulsion separation.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities , 182 Minyuan Road, Wuhan 430074, People's Republic of China
| | - Jing Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , 18 Tianshui Middle Road, Lanzhou 730000, People's Republic of China
| | - Wenwen Yang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities , 182 Minyuan Road, Wuhan 430074, People's Republic of China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Heqing Tang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities , 182 Minyuan Road, Wuhan 430074, People's Republic of China
| |
Collapse
|
20
|
Maganti L, Radhakrishnan TP. Poly(N-octadecylaniline) Synthesized at the Air-Water Interface: Aligned Nanofibers and Gold Nanocomposite Assembly via
the Langmuir-Blodgett Technique. ChemistrySelect 2017. [DOI: 10.1002/slct.201701048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lasya Maganti
- School of Chemistry; University of Hyderabad; Hyderabad - 500 046 India
| | | |
Collapse
|
21
|
Pandey S. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.115] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Gottam R, Bhosale RS, Srinivasan P. Polyaniline salt containing dual dopants, pyrelenediimide tetracarboxylic acid, and sulfuric acid: Fluorescence and supercapacitor. J Appl Polym Sci 2017. [DOI: 10.1002/app.45456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ramesh Gottam
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Rajesh S. Bhosale
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Palaniappan Srinivasan
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- CSIR-Network Institutes for Solar Energy; New Delhi India
| |
Collapse
|
23
|
Jin W, Han L, Han X, Zhang B, Xu P. Interfacial synthesis of lollipop-like Au–polyaniline nanocomposites for catalytic applications. RSC Adv 2016. [DOI: 10.1039/c6ra15446h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lollipop-like Au–PANI nanocomposites show high catalytic activity for the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) and plasmon-driven conversion of 4-aminothiophenol (4ATP) into 4,4′-dimercaptoazobenzene (DMAB).
Collapse
Affiliation(s)
- Wen Jin
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Li Han
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xijiang Han
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Ping Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|