1
|
Juste-Dolz A, Teixeira W, Pallás-Tamarit Y, Carballido-Fernández M, Carrascosa J, Morán-Porcar Á, Redón-Badenas MÁ, Pla-Roses MG, Tirado-Balaguer MD, Remolar-Quintana MJ, Ortiz-Carrera J, Ibañez-Echevarría E, Maquieira A, Giménez-Romero D. Real-world evaluation of a QCM-based biosensor for exhaled air. Anal Bioanal Chem 2024; 416:7369-7383. [PMID: 38922434 PMCID: PMC11584482 DOI: 10.1007/s00216-024-05407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
The biosensor, named "virusmeter" in this study, integrates quartz crystal microbalance technology with an immune-functionalized chip to distinguish between symptomatic patients with respiratory diseases and healthy individuals by analyzing exhaled air samples. Renowned for its compact design, rapidity, and noninvasive nature, this device yields results within a 5-min timeframe. Evaluated under controlled conditions with 54 hospitalized symptomatic COVID-19 patients and 128 control subjects, the biosensor demonstrated good overall sensitivity (98.15%, 95% CI 90.1-100.0) and specificity (96.87%, 95% CI 92.2-99.1). This proof-of-concept presents an innovative approach with significant potential for leveraging piezoelectric sensors to diagnose respiratory diseases.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - William Teixeira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Yeray Pallás-Tamarit
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Mario Carballido-Fernández
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
- Universidad CEU Cardenal Herrera, Calle Grecia, 31, 12006, Castellón de la Plana, Spain
| | - Javier Carrascosa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ángela Morán-Porcar
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | - María Ángeles Redón-Badenas
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | - María Gracia Pla-Roses
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | | | - María José Remolar-Quintana
- Hospital General Universitario de Castellón, Avinguda de Benicàssim, 128, 12004, Castellón de la Plana, Spain
| | - Jon Ortiz-Carrera
- La Fe University and Polytechnic Hospital, Avinguda de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain
| | - Ethel Ibañez-Echevarría
- La Fe University and Polytechnic Hospital, Avinguda de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - David Giménez-Romero
- Departamento de Química-Física, Universitat de València, Calle Doctor Moliner 50, 46100, Burjassot, Spain.
| |
Collapse
|
2
|
De Mattos LC, Ferreira AIC, de Oliveira KY, Nakashima F, Brandão CC. The Potential Contribution of ABO, Lewis and Secretor Histo-Blood Group Carbohydrates in Infection by Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:671958. [PMID: 34222043 PMCID: PMC8251793 DOI: 10.3389/fcimb.2021.671958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
The glycosyltransferases encoded by genes from the human ABO, Lewis, and Secretor histo-blood group systems synthesize part of the carbohydrate antigens in hematopoietic and non-hematopoietic tissues. The combined action of these glycosyltransferases strongly influences cell, tissue, mucosa, and exocrine secretion carbohydrate phenotypes, including those serving as habitat for mutualistic and pathogenic microorganisms. A set of reports investigated associations between Toxoplasma gondii infection and the ABO histo-blood group system, but the results are contradictory. As T. gondii uses the gastrointestinal tract as a route for infection, and in this organ, the expression of ABO, Lewis, and Secretor histo-blood group carbohydrates occurs, it is reasonable to suppose some biological relationship between them. This text reviewed association studies published in recent decades focusing on the potential contribution of the ABO, Lewis, and Secretor histo-blood group carbohydrates and infection by T. gondii.
Collapse
Affiliation(s)
- Luiz Carlos De Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Ana Iara Costa Ferreira
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Karina Younan de Oliveira
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Fabiana Nakashima
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
- FAMERP Toxoplasma Research Group, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| |
Collapse
|
3
|
Santos A, Nicholson MIG, Feliciano GT, Bueno PR. Low-fouling properties in serum of carboxylic-oligo(ethylene glycol)-based interfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathog 2019; 15:e1007871. [PMID: 31226171 PMCID: PMC6608980 DOI: 10.1371/journal.ppat.1007871] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/03/2019] [Accepted: 05/25/2019] [Indexed: 01/01/2023] Open
Abstract
Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis. Toxoplasmosis is caused by the protozoan Toxoplasma gondii, belonging to the Apicomplexa phylum. This phylum comprises important parasites able to infect a broad diversity of animals, including humans. A particularity of T. gondii is its ability to invade virtually any nucleated cell of all warm-blooded animals through an active process, which depends on the secretion of adhesin proteins. These proteins are discharged by specialized organelles localized in the parasite apical region, and termed micronemes and rhoptries. We show in this study that two microneme proteins from T. gondii utilize their adhesion activity to stimulate innate immunity. These microneme proteins, denoted MIC1 and MIC4, recognize specific sugars on receptors expressed on the surface of mammalian immune cells. This binding activates these innate immune cells to secrete cytokines, which promotes efficient host defense mechanisms against the parasite and regulate their pathogenesis. This activity promotes a chronic infection by controlling parasite replication during acute infection.
Collapse
|