1
|
Gu S, Liu M, Xu R, Han X, Lou Y, Kong Y, Gao Y, Shang S, Song Z, Song J, Li J. Ecofriendly Controlled-Release Insecticide Carrier: pH-/Temperature-Responsive Rosin-Derived Hydrogels for Avermectin Delivery against Mythimna separata (Walker). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10992-11010. [PMID: 38743441 DOI: 10.1021/acs.langmuir.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.
Collapse
Affiliation(s)
- Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mei Liu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
2
|
Shevtsov V, Hsin TY, Shieh YT. Preparation of amphiphilic copolymers via base-catalyzed hydrolysis of quaternized poly[2-(dimethylamino)ethyl methacrylate]. Polym Chem 2022. [DOI: 10.1039/d1py01697k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-stimuli-responsiveness of tertiary amine-containing polyacrylates makes them highly attractive for use in a wide range of applications. In the last decade, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) has received exceptionally large attention...
Collapse
|
3
|
Nechikkattu R, Kong J, Lee YS, Moon HJ, Bae JH, Kim SH, Park SS, Ha CS. Tunable multi-responsive nano-gated mesoporous silica nanoparticles as drug carriers. Colloids Surf B Biointerfaces 2021; 208:112119. [PMID: 34571469 DOI: 10.1016/j.colsurfb.2021.112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Tunable multi-responsive mesoporous silica nanoparticles were prepared by post-condensation/surface modification of MCM-41 nanoparticles. Surface grafting of a poly(N,N-dimethylaminoethyl methacrylate)-based polymer containing disulfide bonds was achieved by a click reaction. Chemical modification, morphological characteristics, and textural properties of the nanoparticles were studied using multiple characterization techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering, and nitrogen adsorption/desorption behavior. The nanoparticles retained the meso-structural integrity of MCM41 and particle size < 100 nm after grafting with the polymer. The pH and redox-responsive behavior of the nanoparticles were also studied. The nanoparticles possess excellent drug-loading capacity owing to their large surface area and 'closed gate' mechanism of the grafted polymer chains. The release profile of doxorubicin at two different pH (7.4 and 5.5) and in the presence of dithiothreitol showed a dual response behavior. The nano drug carrier device exhibited efficient intracellular uptake in cancer cells with suitable cytotoxicity and pharmacokinetic behavior, and may therefore be considered a good candidate for cancer therapy.
Collapse
Affiliation(s)
- Riyasudheen Nechikkattu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jungwon Kong
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Ho Bae
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sung Soo Park
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Pang B, Yu Y, Zhang W. Thermoresponsive Polymers Based on Tertiary Amine Moieties. Macromol Rapid Commun 2021; 42:e2100504. [PMID: 34523742 DOI: 10.1002/marc.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers exhibiting unique reversible phase transition properties in aqueous solution in response to temperature stimuli have been extensively investigated. In the past two decades, thermoresponsive polymers based on tertiary amine moieties have achieved considerable progress and become an important family of thermoresponsive polymers, including tertiary amine functionalized poly((meth)acrylamide)s, poly((meth)acrylate)s, poly(styrene)s, poly(vinyl alcohol)s, and poly(ethylene oxide)s, which exhibit lower critical solution temperature and/or upper critical solution temperature in water or aliphatic alcohols. Their phase transition behavior can be modulated by the solution pH and CO2 due to the protonation of tertiary amine moieties in acidic condition and deprotonation in alkaline condition and the charged ammonium bicarbonate formed by the tertiary amine moieties and CO2 . The aim of this review is to summarize the recent progress in the thermoresponsive polymers based on tertiary amine moieties.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Mohammad SA, Dolui S, Kumar D, Mane SR, Banerjee S. Facile access to functional polyacrylates with dual stimuli response and tunable surface hydrophobicity. Polym Chem 2021. [DOI: 10.1039/d1py00378j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Well-defined functional polyacrylates with dual stimuli response and tunable surface hydrophobicity were synthesized via the recyclable Ni–Co alloy catalyzed reversible deactivation radical polymerization technique at ambient temperature.
Collapse
Affiliation(s)
- Sk Arif Mohammad
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | - Subrata Dolui
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | - Devendra Kumar
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | - Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Sanjib Banerjee
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| |
Collapse
|
6
|
Wang T, Kou R, Zhang J, Zhu R, Cai H, Liu G. Tuning the Light Response of Strong Polyelectrolyte Brushes with Counterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13051-13059. [PMID: 33094611 DOI: 10.1021/acs.langmuir.0c02494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a negatively charged poly(3-sulfopropyl methacrylate potassium) (PSPMA) brush has been employed as a model system to demonstrate the tuning of the light response of strong polyelectrolyte brushes (SPBs) with counterions. The substitution of K+ counterions by azobenzene-containing counterions (Azo-N+) renders the PSPMA brush light-responsive in aqueous solutions. Nevertheless, the strength of the light response of the PSPMA brush is weak due to the inefficient disassembly of the micelle-like aggregates in the brush upon irradiation with ultraviolet light. Counterion mixtures of Azo-N+ and K+ are employed to realize a strong light response of the PSPMA brush by incorporating a reasonable amount of Azo-N+ counterions into the brush. The strength of the light response of the PSPMA brush can be tuned by the mole ratio of Azo-N+ to K+. Furthermore, properties including the hydration and conformation of the PSPMA brush can be reversibly switched via alternating ultraviolet and visible light irradiation. This work opens up the opportunities available for the use of counterions to tune the light response of SPBs.
Collapse
Affiliation(s)
- Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, 330031, P. R. China
| | - Ran Kou
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renwei Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongtao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
7
|
Horst RJ, Brió Pérez M, Cohen R, Cirelli M, Dueñas Robles PS, Elshof MG, Andreski A, Hempenius MA, Benes NE, Damen C, de Beer S. Swelling of Poly(methyl acrylate) Brushes in Acetone Vapor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12053-12060. [PMID: 32997502 PMCID: PMC7558288 DOI: 10.1021/acs.langmuir.0c02510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 06/01/2023]
Abstract
Sensor platforms can benefit from the incorporation of polymer brushes since brushes can concentrate the analyte near the sensor surface. Brushes that absorb acetone vapor are of particular interest since acetone is an important marker for biological processes. We present a simple procedure to synthesize acetone-responsive poly(methyl acrylate) brushes. Using spectroscopic ellipsometry, we show that these brushes respond within seconds and swell by more than 30% when exposed to acetone vapor. Moreover, quartz crystal microbalance measurements demonstrate that the brushes can be exploited to increase the acetone detection sensitivity of sensors by more than a factor 6. Surprisingly, we find that the swelling ratio of the brushes in acetone vapor is independent of the grafting density and the degree of polymerization of the polymers in the brush. This is qualitatively different from swelling of the same brushes in liquid environments, where the swelling ratio decreases for increasing grafting densities. Yet, it indicates that the brushes are robust and reproducible candidates for implementation in vapor sensor systems.
Collapse
Affiliation(s)
- Rens J. Horst
- Materials
Science and Technology of Polymers, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Maria Brió Pérez
- Materials
Science and Technology of Polymers, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Rick Cohen
- Department
of Chemistry, Saxion University of Applied
Sciences, 7513 AB Enschede, The Netherlands
| | - Marco Cirelli
- Materials
Science and Technology of Polymers, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Paloma S. Dueñas Robles
- Materials
Science and Technology of Polymers, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Maria G. Elshof
- Membrane
Science and Technology Cluster, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Aleksandar Andreski
- Department
of Nanotechnology, Saxion University of
Applied Sciences, 7513 AB Enschede, The Netherlands
| | - Mark A. Hempenius
- Materials
Science and Technology of Polymers, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Nieck E. Benes
- Membrane
Science and Technology Cluster, University
of Twente, 7522 NB Enschede, The Netherlands
| | - Cas Damen
- Department
of Nanotechnology, Saxion University of
Applied Sciences, 7513 AB Enschede, The Netherlands
| | - Sissi de Beer
- Materials
Science and Technology of Polymers, University
of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
8
|
Geyik G, Işıklan N. Synthesis, characterization and swelling performance of a temperature/pH-sensitive κ-carrageenan graft copolymer. Int J Biol Macromol 2020; 152:359-370. [DOI: 10.1016/j.ijbiomac.2020.02.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
|
9
|
Tanc B, Orakdogen N. Influence of gel preparation concentration on statistical mechanics of poly(dialkylaminoethyl methacrylate) gels on the basis of scaling concept: Toward tunable elasticity and thermomechanical parameters. J Appl Polym Sci 2020. [DOI: 10.1002/app.48350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Beril Tanc
- Department of Chemistry, Soft Materials Research LaboratoryIstanbul Technical University 34469 Maslak Istanbul Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research LaboratoryIstanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
10
|
Okten NS, Tanc B, Orakdogen N. Design and molecular dynamics of multifunctional sulfonated poly(dimethylaminoethyl methacrylate)/mica hybrid cryogels through freezing-induced gelation. SOFT MATTER 2019; 15:7043-7062. [PMID: 31436777 DOI: 10.1039/c9sm01534e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article addresses various strategies that have been explored to design sulfonated poly(dimethylaminoethyl methacrylate)/mica hybrid-gels with optimized network parameters and mechanical/swelling properties. A series of hybrid cryogels and hydrogels containing amino and sulfonic acid groups were prepared from N,N-dimethylaminoethyl methacrylate (DMAEMA) and 2-acrylamido-2-methyl-1-propane sulfonic acid in the presence of inorganic additive mica via a cryogelation process and conventional in situ copolymerization. Cryogelation was used to fine-tune the mechanical properties of the PDMAEMA-based hybrid gels. The effects of pH, temperature and mica content on the network parameters, mechanical properties and swelling behavior were discussed. X-ray diffractometry and Fourier transform infrared spectroscopy confirmed that mica particles had participated in (cryo)polymerization, and the thermal stability and surface morphologies were improved by the addition of mica. The profile of water loss, decomposition of amine groups and breakdown of PDMAEMA chains of the resulting hybrid gels were determined by thermogravimetric analysis. A critical mica concentration was found for the hybrid hydrogels where the degree of swelling attains a maximum value. Below 0.50% (w/v) of mica, the ionic nature of mica dominates its crosslinker effect. The hybrid cryogels were tough and able to recover at room temperature after compression testing. The prepared hybrid-gels showed an enhanced swelling response and on-off switching swelling characteristics in water and in aqueous NaCl solutions. The parameters of equilibrium swelling, the initial swelling rate, the diffusional exponent, and the diffusion coefficient were evaluated and the swelling kinetics of the hybrid hydrogels and cryogels in water followed the pseudo second order model. All the prepared hybrid hydrogel and cryogel materials with tunable mechanical stability and elasticity can be excellent candidates for designing smart materials.
Collapse
Affiliation(s)
- Nur Sena Okten
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Istanbul, Maslak, Turkey. and Istanbul Kultur University, Department of Civil Engineering, 34158, Istanbul, Bakırkoy, Turkey
| | - Beril Tanc
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Istanbul, Maslak, Turkey.
| | - Nermin Orakdogen
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Istanbul, Maslak, Turkey.
| |
Collapse
|
11
|
Xiao Y, Tang C, Chen Y, Lang M. Dual stimuli-responsive polypeptide prepared by thiol-ene click reaction of poly(l-cysteine) and N, N-dimethylaminoethyl acrylate. Biopolymers 2019; 110:e23318. [PMID: 31274198 DOI: 10.1002/bip.23318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive polymers that can undergo conformational changes with external triggers have enabled themselves as smart materials for various utilizations, among which biodegradability is of particular importance to be engineered for biomedical application. In this study, a thermo and pH dual responsive polypeptide (N, N-dimethylaminoethyl acrylate-modified poly(l-cysteine)) (PLC-g-DMAEA) was prepared by the combination of N-carboxyanhydride ring-open polymerization and thiol-ene click chemistry. The biodegradable poly(l-cysteine) (PLC) with pendant thiol groups provided an easily clickable backbone for postmodification, which was demonstrated by reacting with a well-known monomer of N, N-dimethylaminoethyl acrylate (DMAEA) to achieve both temperature and pH responsiveness. The irreversible thermo-response of PLC-g-DMAEA could be attributed to the ordered β-sheets formed upon heating, leading to the trapped side groups with poor water accessibility. Moreover, this copolymer precipitated at pH ranging from 7.5 to 9.7, but protonation of tertiary amine groups (pH < 7.5) and salt forming of masked thiol groups (pH > 9.7) rendered it soluble in water. Our results revealed that a ready available vinyl monomer could be easily clicked onto the biodegradable PLC and its stimuli responsiveness would be reserved. Moreover, the primary and secondary structures of PLC might influence the conformation, thus leading to the unique responsive behavior of the resulted copolymer.
Collapse
Affiliation(s)
- Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenna Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Tanc B, Orakdogen N. Oscillating Swelling–Shrinking Dynamics and Diffusive Properties of Weakly Cationic Poly(Aminoalkyl Methacrylate)‐Based Cryogels: Quantifying the Influence of Polymer Network Parameters. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Beril Tanc
- Soft Materials Research LaboratoryDepartment of ChemistryIstanbul Technical University 34469 Maslak Istanbul Turkey
| | - Nermin Orakdogen
- Soft Materials Research LaboratoryDepartment of ChemistryIstanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
13
|
Chen YL, Zhang L, Song J, Jian G, Hirasaki G, Johnston K, Biswal SL. Two-Step Adsorption of a Switchable Tertiary Amine Surfactant Measured Using a Quartz Crystal Microbalance with Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:695-701. [PMID: 30638384 DOI: 10.1021/acs.langmuir.8b03150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption of a switchable cationic surfactant, N, N, N'-trimethyl- N'-tallow-1,3-diaminopropane (DTTM, Duomeen TTM), at the silica/aqueous solution interface is characterized using a quartz crystal microbalance with dissipation (QCM-D). The adsorption isotherms reveal that changes in the solution pH or salinity affect surfactant adsorption in competing ways. In particular, the combination of the degree of protonation of the surfactant and electrostatic interactions is responsible for surfactant adsorption. The kinetics of adsorption is carefully measured using the real-time measurement of a QCM-D, allowing us to fit the experimental data with analytical models. At pH values of 3 and 5, where the DTTM is protonated, DTTM exhibits two-step adsorption. This is representative of a fast step in which the surfactant molecules are adsorbed with head-groups orientated toward the surface, followed by a slower second step corresponding to formation of interfacial surfactant aggregates on the silica surface.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Chemical & Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Leilei Zhang
- Department of Chemical & Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Jin Song
- Department of Chemical & Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Guoqing Jian
- Department of Chemical & Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - George Hirasaki
- Department of Chemical & Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Keith Johnston
- Department of Chemical Engineering , UT Austin , Austin , Texas 78712 , United States
| | - Sibani Lisa Biswal
- Department of Chemical & Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
14
|
Jalani G, Tam V, Vetrone F, Cerruti M. Seeing, Targeting and Delivering with Upconverting Nanoparticles. J Am Chem Soc 2018; 140:10923-10931. [PMID: 30113851 DOI: 10.1021/jacs.8b03977] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient control over drug release is critical to increasing drug efficacy and avoiding side effects. An ideal drug delivery system would deliver drugs in the right amount, at the right location and at the right time noninvasively. This can be achieved using light-triggered delivery: light is noninvasive, spatially precise and safe if appropriate wavelengths are chosen. However, the use of light-controlled delivery systems has been limited to areas that are not too deep inside the body because ultraviolet (UV) or visible (Vis) light, the typical wavelengths used for photoreactions, have limited penetration and are toxic to biological tissues. The advent of upconverting nanoparticles (UCNPs) has made it possible to overcome this crucial challenge. UCNPs can convert near-infrared (NIR) radiation, which can penetrate deeper inside the body, to shorter wavelength NIR, Vis and UV radiation. UCNPs have been used as bright, in situ sources of light for on-demand drug release and bioimaging applications. These remote-controlled, NIR-triggered drug delivery systems are especially attractive in applications where a drug is required at a specific location and time such as in anesthetics, postwound healing, cardiothoracic surgery and cancer treatment. In this Perspective, we discuss recent progress and challenges as well as propose potential solutions and future directions, especially with regard to their translation to the clinic.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Vivienne Tam
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications , Université du Québec , Varennes , Quebec J3X 1S2 , Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| |
Collapse
|
15
|
Maiti D, Chao Y, Dong Z, Yi X, He J, Liu Z, Yang K. Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. NANOSCALE 2018; 10:13976-13985. [PMID: 30010686 DOI: 10.1039/c8nr03986k] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Although chemo-radiotherapy has been widely applied in clinics for cancer treatment, current strategies still face many challenges including serious side-effects and drug resistance. Herein, we develop a chemically cross-linked poly-N,N'-dimethyl aminoethyl methacrylate (PDMAEMA) smart nanogel as an excellent thermosensitive nanocarrier to load both an anticancer drug, doxorubicin (DOX) and a radioisotope, 131I-labeled albumin, for enhanced chemo-radioisotope therapy. Such a PDMAEMA nanogel in the solution form at room temperature can be easily injected into a tumor, in which it would be transformed into a gel at body temperature. Sustained drug release occurs in the tumor owing to the pH sensitive switching activity of the nanogel. In addition, the in situ thermogelling behavior of PDMAEMA leads to the long-term retention of 131I-labeled albumin within the tumor. In vivo chemo-radiotherapy is then conducted, achieving excellent therapeutic efficacy due to the sustained drug release and 131I retention for a long time in the cancer lesions. Our newly developed strategy of using a thermosensitive polymer for enhancing chemo-radiotherapy may be considered as a promising platform for combined cancer therapy without inducing obvious side-effects compared to the traditional chemo or radiotherapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuan Yi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jinlin He
- College of Chemistry, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
16
|
Zhao B, Yuan G, Chu X, Yang J, Zhao J. Response of a Permanently Charged Polyelectrolyte Brush to External Ions: The Aspects of Structure and Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6757-6765. [PMID: 29781623 DOI: 10.1021/acs.langmuir.8b01195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structure and dynamics inside permanently charged polyelectrolyte brushes, sodium polystyrene sulfonate brushes, during their response to the introduction of external ions (NaCl) are investigated by neutron reflectivity and dielectric spectroscopy. Neutron reflectivity measurements show that the segmental density of the inner part of the brushes decreases and that of the outer part increases when the salt level is tuned from the salt-free condition to a moderate level (<10-2 M)-the brushes swell further compared with the salt-free condition. This is attributed to the breakup of the multiplets formed by dipole-dipole pairs, and by this process, the previously constrained chain segments by the multiplets are released. Dielectric spectroscopy discovers a giant dipole by the charge separation of the adsorbed counterions and the PSS- chains, induced by electric field. The dynamics of the induced giant dipole is accelerated with the increase of external salt, as a result of the charge regularization by elevated salt level. At high-enough salt level, the screening effect reduces the electrostatic repulsion between the neighboring chains and makes the brushes shrink.
Collapse
Affiliation(s)
- Bintao Zhao
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangcui Yuan
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Xiao Chu
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jingfa Yang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jiang Zhao
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
17
|
Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Larin DE, Govorun EN. Surfactant-Induced Patterns in Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8545-8552. [PMID: 28759241 DOI: 10.1021/acs.langmuir.7b01850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The properties of surfaces with grafted macromolecules are determined by a fine structure of the macromolecular layer, whereas the mixtures of macromolecules with surfactants are very rich in structure types. Using the scaling mean-field theory, we consider the self-assembly in polymer brushes into various patterns induced by interactions with low-molecular surfactants. The interaction energies of the parts of a surfactant molecule with the polymer units are assumed to be greatly different. With increasing the grafting density, the formation of lamellae perpendicular to the grafting plane, a continuous layer with oblong or round pores, or a homogeneous brush is predicted. The driving force of the pattern formation is a gain in the interaction energy of surfactant molecules oriented at the lateral surfaces of lamellae or pores. The process of pore formation in a homogeneous brush caused by a temperature change at definite grafting densities is described as the first-order phase transition. It is accompanied by a stepwise extension of the brush and by orientational ordering of surfactant molecules. The transitions between the other patterns are of the second order. The thickness of lamellae and the distance between pores are approximately twice the surfactant molecule size except for the extremely high grafting densities. The diagrams of brush patterns are presented and discussed.
Collapse
Affiliation(s)
- Daniil E Larin
- Faculty of Physics, M. V. Lomonosov Moscow State University , Leninskie gory, Moscow, 119991 Russia
| | - Elena N Govorun
- Faculty of Physics, M. V. Lomonosov Moscow State University , Leninskie gory, Moscow, 119991 Russia
| |
Collapse
|
19
|
Pageni P, Kabir MP, Yang P, Tang C. Binding of Cobaltocenium-containing Polyelectrolytes with Anionic Probes. J Inorg Organomet Polym Mater 2017; 27:1100-1109. [PMID: 29097986 PMCID: PMC5662110 DOI: 10.1007/s10904-017-0561-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 11/27/2022]
Abstract
Cationic cobaltocenium-containing polyelectrolytes have a unique ability to form ionic complex with various anionic species. We carried out two sets of model study to compare the relative binding strength of a cobaltocenium-containing polyelectrolyte. First, the nature and relative strength of intermolecular interaction between cobaltocenium-containing polyelectrolytes and different anionic probes were investigated by spectroscopic methods. A dye-displacement method was used to monitor absorbance and fluorescence emissions. Second, the binding strength of this cobaltocenium-containing polyelectrolyte was compared with a classical quaternary ammonium polymer. Formation of polyelectrolyte complex between the cobaltocenium-containing polyelectrolyte and a common anionic polyelectrolyte at various concentrations was examined by optical absorption and light scattering.
Collapse
Affiliation(s)
- Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mohammad Pabel Kabir
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Peng Yang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Panzarasa G, Aghion S, Marra G, Wagner A, Liedke MO, Elsayed M, Krause-Rehberg R, Ferragut R, Consolati G. Probing the Impact of the Initiator Layer on Grafted-from Polymer Brushes: A Positron Annihilation Spectroscopy Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guido Panzarasa
- Department
of Polymer Engineering and Science, Montanuniversität, Otto-Glöckel Straβe
2, 8700 Leoben, Austria
| | - Stefano Aghion
- LNESS,
Department of Physics, Politecnico di Milano, via Anzani 42, 22100 Como, Italy
- Istituto Nazionale
di Fisica Nucleare, via Celoria 16, 20133 Milano, Italy
| | - Gianluigi Marra
- Eni Donegani Research
Center for Renewable Energies and Environment, Via Fauser 4, 28100 Novara, Italy
| | - Andreas Wagner
- Institute
of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Maciej Oskar Liedke
- Institute
of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Mohamed Elsayed
- Institut
für Physik, Martin-Luther-Universität Halle, 06099 Halle, Germany
| | | | - Rafael Ferragut
- LNESS,
Department of Physics, Politecnico di Milano, via Anzani 42, 22100 Como, Italy
- Istituto Nazionale
di Fisica Nucleare, via Celoria 16, 20133 Milano, Italy
| | - Giovanni Consolati
- Department
of Aerospace Science and Technology, Politecnico di Milano, via La Masa
34, 20156 Milano, Italy
| |
Collapse
|
21
|
Mohammadi M, Salami-Kalajahi M, Roghani-Mamaqani H, Golshan M. Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly(2-(dimethylamino)ethyl methacrylate). INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1236340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Mohammadi
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Marzieh Golshan
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
22
|
Willott JD, Murdoch TJ, Webber GB, Wanless EJ. Physicochemical behaviour of cationic polyelectrolyte brushes. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Larin DE, Lazutin AA, Govorun EN, Vasilevskaya VV. Self-Assembly into Strands in Amphiphilic Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7000-7008. [PMID: 27267357 DOI: 10.1021/acs.langmuir.6b01208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of amphiphilic macromolecules end-grafted to a plane surface is studied using mean-field theory and computer simulations. Chain backbones are built from hydrophobic groups, whereas side groups are hydrophilic. The brush is immersed in a solvent, which can be good or poor, but on average is not far from θ conditions. It is demonstrated that the strong amphiphilicity of macromolecules at a monomer unit level leads to their self-assembly into a system of strands with a 2D hexagonal order in a cross-section parallel to the grafting plane. The structure period is determined by the length of side groups. In theory, this effect is explained by the orientation of strongly amphiphilic monomer units at a strand/solvent boundary that leads to an effective negative contribution to the surface tension. Computer simulations with molecular dynamics (MD) are used for a detailed study of the local brush structure. The aggregation number of strands grows with the increase of the grafting density and side group length.
Collapse
Affiliation(s)
- Daniil E Larin
- Faculty of Physics, M. V. Lomonosov Moscow State University , Leninskie gory, Moscow 119991, Russia
| | - Alexei A Lazutin
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS , Vavilova str., 28, Moscow 119991, Russia
| | - Elena N Govorun
- Faculty of Physics, M. V. Lomonosov Moscow State University , Leninskie gory, Moscow 119991, Russia
| | - Valentina V Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS , Vavilova str., 28, Moscow 119991, Russia
| |
Collapse
|
24
|
Geng Z, Cheng Z, Zhu Y, Jiang W. Controllable Cooperative Self-Assembly of PS-b-PAA/PS-b-P4VP Mixture by Tuning the Intercorona Interaction. J Phys Chem B 2016; 120:5527-33. [DOI: 10.1021/acs.jpcb.6b00273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhen Geng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhongkai Cheng
- School
of Life Sciences, Jilin University, Changchun 130022, People’s Republic of China
| | - Yutian Zhu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Wei Jiang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
25
|
Willott JD, Murdoch TJ, Webber GB, Wanless EJ. Nature of the Specific Anion Response of a Hydrophobic Weak Polyelectrolyte Brush Revealed by AFM Force Measurements. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02656] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joshua D. Willott
- Priority
Research Centre
for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Timothy J. Murdoch
- Priority
Research Centre
for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B. Webber
- Priority
Research Centre
for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J. Wanless
- Priority
Research Centre
for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
26
|
Vorobii M, Pop-Georgievski O, de los Santos Pereira A, Kostina NY, Jezorek R, Sedláková Z, Percec V, Rodriguez-Emmenegger C. Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py01730d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth of polymer brushes from a variety of methacrylate monomers was accomplished using UV light as a polymerization trigger.
Collapse
Affiliation(s)
- Mariia Vorobii
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Andres de los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Nina Yu. Kostina
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ryan Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Zdeňka Sedláková
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
- Roy & Diana Vagelos Laboratories
| |
Collapse
|