1
|
Fracaroli AM, Grover G, Ohtsu H, Kawano M, Gándara F, de Rossi RH, Weiss RG, Tashiro K. 1D Supramolecular Assemblies That Crystallize and Form Gels in Response to the Shape-Complementarity of Alcohols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7353-7360. [PMID: 37196166 DOI: 10.1021/acs.langmuir.3c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
N-9-Fluorenylmethyloxycarbonyl (Fmoc)- and C-tertiary butyl (t-Bu)-protected glutamate (L-2), bearing a phenanthroline moiety at the side residue, forms 1D supramolecular assemblies via H-bonding as well as undergoing π-stacking interactions to afford crystals or gels that depend on the shape-complementarity of coexisting alcohols, as demonstrated by structural analyses on these assemblies by means of single-crystal X-ray diffractometry and supplemented with small- and wide-angle X-ray scattering data. Moreover, the rheological measurements on the gels help to define a model for when gels and crystals are expected and found. These observations and conclusions highlight an important, but not very appreciated, aspect of solute-solvent interactions within supramolecular assemblies that can allow the constituent-aggregating molecules in some systems to exhibit high selectivity toward the structures of their solvents. The consequences of this selectivity, as demonstrated here by single-crystal and powder X-ray diffraction data, can lead to self-assembled structures which alter completely the bulk phase properties and morphology of the materials. In that regard, rheological measurements have helped to develop a model to explain when gels and phase-separated mixtures of crystals and solvents are expected.
Collapse
Affiliation(s)
- Alejandro M Fracaroli
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Girishma Grover
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057-1227, United States
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Felipe Gándara
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Richard G Weiss
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057-1227, United States
| | - Kentaro Tashiro
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
2
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
3
|
Savage P, Gao S, Esposto J, Adhikari B, Zabik N, Kraatz HB, Eichhorn SH, Martic-Milne S. Self-assembly of N-, C- and N-/C-terminated Val-and Phe-amino acid side chains of naphthalene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Giuri D, Marshall LJ, Wilson C, Seddon A, Adams DJ. Understanding gel-to-crystal transitions in supramolecular gels. SOFT MATTER 2021; 17:7221-7226. [PMID: 34286796 DOI: 10.1039/d1sm00770j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Libby J Marshall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. and Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
Giuri D, Marshall LJ, Dietrich B, McDowall D, Thomson L, Newton JY, Wilson C, Schweins R, Adams DJ. Exploiting and controlling gel-to-crystal transitions in multicomponent supramolecular gels. Chem Sci 2021; 12:9720-9725. [PMID: 34349943 PMCID: PMC8293982 DOI: 10.1039/d1sc02347k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Multicomponent supramolecular gels provide opportunities to form materials that are not accessible when using the single components alone. Different scenarios are possible when mixing multiple components, from complete co-assembly (mixing of the components within the self-assembled structures formed) to complete self-sorting such that each structure contains only one of the components. Most examples of multicomponent gels that currently exist form stable gels. Here, we show that this can be used to control the mechanical properties of the gels, but what is probably most exciting is that we show that we can use a magnetic field to control the shape of the crystals. The gelling component aligns in a magnetic field and so results in anisotropic crystals being formed.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna Via Selmi, 2 40126 Bologna Italy
| | | | - Bart Dietrich
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Daniel McDowall
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Lisa Thomson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Jenny Y Newton
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Claire Wilson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin 71 Avenue des Martyrs, CS 20156 F-38042 Grenoble CEDEX 9 France
| | - Dave J Adams
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
6
|
Kralj S, Bellotto O, Parisi E, Garcia AM, Iglesias D, Semeraro S, Deganutti C, D’Andrea P, Vargiu AV, Geremia S, De Zorzi R, Marchesan S. Heterochirality and Halogenation Control Phe-Phe Hierarchical Assembly. ACS NANO 2020; 14:16951-16961. [PMID: 33175503 PMCID: PMC7872421 DOI: 10.1021/acsnano.0c06041] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/30/2020] [Indexed: 05/05/2023]
Abstract
Diphenylalanine is an amyloidogenic building block that can form a versatile array of supramolecular materials. Its shortcomings, however, include the uncontrolled hierarchical assembly into microtubes of heterogeneous size distribution and well-known cytotoxicity. This study rationalized heterochirality as a successful strategy to address both of these pitfalls and it provided an unprotected heterochiral dipeptide that self-organized into a homogeneous and optically clear hydrogel with excellent ability to sustain fibroblast cell proliferation and viability. Substitution of one l-amino acid with its d-enantiomer preserved the ability of the dipeptide to self-organize into nanotubes, as shown by single-crystal XRD analysis, whereby the pattern of electrostatic and hydrogen bonding interactions of the backbone was unaltered. The effect of heterochirality was manifested in subtle changes in the positioning of the aromatic side chains, which resulted in weaker intermolecular interactions between nanotubes. As a result, d-Phe-l-Phe self-organized into homogeneous nanofibrils with a diameter of 4 nm, corresponding to two layers of peptides around a water channel, and yielded a transparent hydrogel. In contrast with homochiral Phe-Phe stereoisomer, it formed stable hydrogels thermoreversibly. d-Phe-l-Phe displayed no amyloid toxicity in cell cultures with fibroblast cells proliferating in high numbers and viability on this biomaterial, marking it as a preferred substrate over tissue-culture plastic. Halogenation also enabled the tailoring of d-Phe-l-Phe self-organization. Fluorination allowed analogous supramolecular packing as confirmed by XRD, thus nanotube formation, and gave intermediate levels of bundling. In contrast, iodination was the most effective strategy to augment the stability of the resulting hydrogel, although at the expense of optical transparency and biocompatibility. Interestingly, iodine presence hindered the supramolecular packing into nanotubes, resulting instead into amphipathic layers of stacked peptides without the occurrence of halogen bonding. By unravelling fine details to control these materials at the meso- and macro-scale, this study significantly advanced our understanding of these systems.
Collapse
Affiliation(s)
- Slavko Kralj
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- Materials
Synthesis Department, Jožef Stefan
Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ottavia Bellotto
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Evelina Parisi
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Ana M. Garcia
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Daniel Iglesias
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Sabrina Semeraro
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Paola D’Andrea
- Life
Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Attilio V. Vargiu
- Physics
Department, University of Cagliari, s.p. 8, km. 0.700, 09042 Monserrato, Italy
| | - Silvano Geremia
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
7
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
8
|
Dibble JP, Troyano-Valls C, Tovar JD. A Tale of Three Hydrophobicities: Impact of Constitutional Isomerism on Nanostructure Evolution and Electronic Communication in π-Conjugated Peptides. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
10
|
Garcia AM, Lavendomme R, Kralj S, Kurbasic M, Bellotto O, Cringoli MC, Semeraro S, Bandiera A, De Zorzi R, Marchesan S. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Chemistry 2020; 26:1880-1886. [PMID: 31868256 DOI: 10.1002/chem.201905681] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 02/06/2023]
Abstract
N-(4-Nitrobenzoyl)-Phe self-assembled into a transparent supramolecular hydrogel, which displayed high fibroblast and keratinocyte cell viability. The compound showed a mild antimicrobial activity against E. coli both as a hydrogel and in solution. Single-crystal XRD data revealed packing details, including protonation of the C-terminus due to an apparent pKa shift, as confirmed by pH titrations. MicroRaman analysis revealed almost identical features between the gel and crystal states, although more disorder in the former. The hydrogel is thermoreversible and disassembles within a range of temperatures that can be fine-tuned by experimental conditions, such as gelator concentration. At the minimum gelling concentration of 0.63 wt %, the hydrogel disassembles in a physiological temperature range of 39-42 °C, thus opening the way to its potential use as a biomaterial.
Collapse
Affiliation(s)
- Ana M Garcia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Roy Lavendomme
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Marina Kurbasic
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Ottavia Bellotto
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Maria C Cringoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Sabrina Semeraro
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Antonella Bandiera
- Dipartimento di Scienze della Vita, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Rita De Zorzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
11
|
Martin AD, Thordarson P. Beyond Fmoc: a review of aromatic peptide capping groups. J Mater Chem B 2020; 8:863-877. [PMID: 31950969 DOI: 10.1039/c9tb02539a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-assembling short peptides have attracted widespread interest due to their tuneable, biocompatible nature and have potential applications in energy materials, tissue engineering, sensing and drug delivery. The hierarchical self-assembly of these peptides is highly dependent on the selection of not only amino acid sequence, but also the capping group which is often employed at the N-terminus of the peptide to drive self-assembly. Although the Fmoc (9H-fluorenylmethyloxycarbonyl) group is commonly used due to its utility in solid phase peptide synthesis, many other aromatic capping groups have been reported which yield functional, responsive materials. This review explores recent developments in the utilisation of functional, aromatic capping groups beyond the Fmoc group for the creation of redox-responsive, fluorescent and drug delivering hydrogel scaffolds.
Collapse
Affiliation(s)
- Adam D Martin
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Draper ER, Adams DJ. Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6506-6521. [PMID: 31038973 DOI: 10.1021/acs.langmuir.9b00716] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-molecular-weight gels are formed by the self-assembly of small molecules into fibrous networks that can immobilize a significant amount of solvent. Here, we focus on our work with a specific class of gelator, the functionalized dipeptide. We discuss the current state of the art in the area, focusing on how these materials can be controlled. We also highlight interesting and unusual observations and unanswered questions in the field.
Collapse
Affiliation(s)
- Emily R Draper
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| |
Collapse
|
13
|
DiGuiseppi D, Thursch L, Alvarez NJ, Schweitzer-Stenner R. Exploring the thermal reversibility and tunability of a low molecular weight gelator using vibrational and electronic spectroscopy and rheology. SOFT MATTER 2019; 15:3418-3431. [PMID: 30938745 DOI: 10.1039/c9sm00104b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cationic glycylalanylglycine (GAG) self-assembles into a gel in a 55 mol% ethanol/45 mol% water mixture. The gel exhibits a network of crystalline fibrils grown to lengths on a 10-4-10-5 m scale (Farrel et al., Soft Matter, 2016, 12, 6096-6110). Rheological data are indicative of a rather strong gel with storage moduli in the 10 kPa regime. Spectroscopic data revealed the existence of two gel phases; one forms below T = 15 °C (phase I) while the other one forms in a temperature range between 15 °C and the melting temperature of ca. 35 °C (phase II). We explored the reformation of the cationic GAG gel in 55 mol% ethanol/45 mol% water after thermal annealing by spectroscopic and rheological means. Our data reveal that even a short residence time of 5 minutes in the sol phase at 50 °C produced a delay of the gelation process and a gel of lesser strength. These observations suggest that the residence time at the annealing temperature can be used to adjust the strength of both gel phases. Our spectroscopic data show that the annealing process does not change the chirality of peptide fibrils in the two gel phases and that the initial aggregation state of the reformation process is by far more ordered for phase I than it is for phase II. In the gel phases of GAG/ethanol/water mixtures, ethanol seems to function as a sort of catalyst that enables the self-assembly of the peptide in spite of its low intrinsic propensity for aggregation.
Collapse
Affiliation(s)
- David DiGuiseppi
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
14
|
Farahani AD, Martin AD, Iranmanesh H, Bhadbhade MM, Beves JE, Thordarson P. Gel- and Solid-State-Structure of Dialanine and Diphenylalanine Amphiphiles: Importance of C⋅⋅⋅H Interactions in Gelation. Chemphyschem 2019; 20:972-983. [PMID: 30784156 DOI: 10.1002/cphc.201801104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/13/2019] [Indexed: 12/26/2022]
Abstract
To investigate the role of the capping group in the solution and solid-state self-assembly of short peptide amphiphiles, dialanine and diphenylalanine have been linked via the N-terminus to a benzene (phenyl) and 3-naphthyl capping groups using three different methylene linkers; (CH2 )n , n=0-4 for the benezene and 0, 1 and 2 for the naphthalene capping group. Atomic force microscopy (AFM), oscillatory rheology, circular dichroism (CD), and IR analysis have been employed to understand the properties of these peptide-based hydrogels. Several X-ray structures of these short peptide gelators give useful conformational information regarding packing. A comparison of these solid state structures with their gel state properties yielded greater insights into the process of self-assembly in short peptide gelators, particularly in terms of the important role of C⋅⋅⋅H interactions appear to play in determining if a short aromatic peptide does form a gel or not.
Collapse
Affiliation(s)
- Abbas D Farahani
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam D Martin
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hasti Iranmanesh
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohan M Bhadbhade
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Geiger DK, Geiger HC, Morell DL. An exploration of O-H⋯O and C-H⋯π inter-actions in a long-chain-ester-substituted phenyl-phenol: methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate. Acta Crystallogr E Crystallogr Commun 2018; 74:594-599. [PMID: 29850074 PMCID: PMC5947469 DOI: 10.1107/s2056989017016589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/17/2017] [Indexed: 06/08/2023]
Abstract
An understanding of the driving forces resulting in crystallization vs organogel formation is essential to the development of modern soft materials. In the mol-ecular structure of the title compound, methyl 10-[4-(4-hydroxyphenyl)phen-oxy]decanoate (MBO10Me), C23H30O4, the aromatic rings of the biphenyl group are canted by 6.6 (2)° and the long-chain ester group has an extended conformation. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, forming chains along [10[Formula: see text]]. The chains are linked by C-H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C-H⋯π inter-actions, forming a three-dimensional supra-molecular structure. The extended structure exhibits a lamellar sheet arrangement of mol-ecules stacking along the b-axis direction. Each mol-ecule has six nearest neighbors and the seven-mol-ecule bundles stack to form a columnar superstructure. Inter-action energies within the bundles are dominated by dispersion forces, whereas inter-columnar inter-actions have a greater electrostatic component.
Collapse
Affiliation(s)
- David K. Geiger
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| | - H. Cristina Geiger
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| | - Dominic L. Morell
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| |
Collapse
|
16
|
Vilaça H, Castro T, Costa FMG, Melle-Franco M, Hilliou L, Hamley IW, Castanheira EMS, Martins JA, Ferreira PMT. Self-assembled RGD dehydropeptide hydrogels for drug delivery applications. J Mater Chem B 2017; 5:8607-8617. [PMID: 32264529 DOI: 10.1039/c7tb01883e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide-based self-assembled hydrogels have triggered remarkable research interest in recent years owing to their biocompatibility and biomimetic properties and responsiveness, which warrant many technological and biomedical applications. Dehydrodipeptides N-capped with naproxen emerged from our research as effective hydrogelators endowed with resistance to proteolysis. Dehydrodipeptide-based hydrogels are promising nanocarriers for drug delivery applications. In this work, we demonstrate that dehydrodipetide Npx-l-Ala-Z-ΔPhe-OH can be deployed as a minimalist hydrogelator module for synthesizing a gelating construct Npx-l-Ala-Z-ΔPhe-G-R-G-D-G-OH bearing a GRGDG adhesion motif. The self-assembly of the peptide construct and the drug delivery properties of the hydrogel were studied in this work. The peptide construct showed no toxicity towards a fibroblast cell line expressing the αvβ3 integrin. Docking studies suggest that the hydrogelator block does not interfere with the recognition of the RGD motif by the integrin receptor. The self-assembly seems to be directed by intermolecular naphthalene π-π stacking interactions, with the peptide backbone assuming a random coil conformation both in solution and in the gel phase. TEM and STEM imaging revealed that the hydrogel is made of entangled bundles of long thin fibres (width circa 23 nm). The hydrogel exhibits viscoelastic properties, thermo-reversibility and recovery after mechanical fluidization. FRET studies showed that curcumin incorporated into the hydrogel interacts non-covalently with the hydrogel fibrils. Delivery of curcumin from the hydrogel into Nile red loaded model membranes (SUVs) was demonstrated by FRET. Naproxen N-capped dehydrodipeptides are efficacious minimalist hydrogelator modules for obtaining hydrogels functionalized with peptide ligands for cell receptors. These hydrogels are potential nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Helena Vilaça
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jones CD, Kennedy SR, Walker M, Yufit DS, Steed JW. Scrolling of Supramolecular Lamellae in the Hierarchical Self-Assembly of Fibrous Gels. Chem 2017. [DOI: 10.1016/j.chempr.2017.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Geiger DK, Geiger HC, Moore SM, Roberts WR. Structural characterization, gelation ability, and energy-framework analysis of two bis(long-chain ester)-substituted 4,4'-biphenyl compounds. Acta Crystallogr C Struct Chem 2017; 73:791-796. [PMID: 28978785 DOI: 10.1107/s2053229617013237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 11/10/2022] Open
Abstract
There are few examples of single-crystal structure determinations of gelators, as gel formation requires that the dissolved gelator self-assemble into a three-dimensional network structure incorporating solvent via noncovalent interactions rather than self-assembly followed by crystallization. In the solid-state structures of the isostructural compounds 4,4'-bis[5-(methoxycarbonyl)pentyloxy]biphenyl (BBO6-Me), C26H34O6, and 4,4'-bis[5-(ethoxycarbonyl)pentyloxy]biphenyl (BBO6-Et), C28H38O6, the molecules sit on a crystallographically imposed center of symmetry, resulting in strictly coplanar phenyl rings. BBO6-Me behaves as an organogelator in various alcohol solvents, whereas BBO6-Et does not. The extended structure reveals bundles of molecules that form a columnar superstructure. Framework-energy calculations reveal much stronger interaction energies within the columns (-52 to -78 kJ mol-1) than between columns (-2 to -16 kJ mol-1). The intracolumnar interactions are dominated by a dispersion component, whereas the intercolumnar interactions have a substantial electrostatic component.
Collapse
Affiliation(s)
- David K Geiger
- Department of Chemistry, SUNY College at Geneseo, Geneseo, NY 14454, USA
| | - H Cristina Geiger
- Department of Chemistry, SUNY College at Geneseo, Geneseo, NY 14454, USA
| | - Shawn M Moore
- Department of Chemistry, SUNY College at Geneseo, Geneseo, NY 14454, USA
| | - William R Roberts
- Department of Chemistry, SUNY College at Geneseo, Geneseo, NY 14454, USA
| |
Collapse
|
19
|
Guo M, Yin Q, Li Y, Huang Y, Zhang Z, Zhou L. Gel–Crystal Transition during Crystallization of Cefpiramide. CHEM LETT 2017. [DOI: 10.1246/cl.170465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mingxia Guo
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yaohui Huang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zaixiang Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
20
|
|
21
|
Lin S, Qin J, Li Y, Li B, Yang Y. Chirality-Driven Parallel and Antiparallel β-Sheet Secondary Structures of Phe-Ala Lipodipeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8246-8252. [PMID: 28763619 DOI: 10.1021/acs.langmuir.7b01942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four Phe-Ala lipodipeptides with different stereochemical structures are observed to self-assemble into twisted nanoribbons in water. The handedness of the twisted nanoribbons is controlled by the chirality of the phenylalanine near the alkyl chain, while the stacking handedness of the phenyl and carbonyl groups is determined by the alanine at the C-terminal. The homochiral and heterochiral lipodipeptides self-assemble into parallel and antiparallel β-sheet structures, respectively. The 1H NMR, FTIR, X-ray diffraction, and circular dichroism characterizations indicate that these phenomena are mainly driven by the interaction between neighboring phenyl groups and H-bonding among the amide groups.
Collapse
Affiliation(s)
- Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jiaming Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
22
|
Raghava SV, Gopinath P, Srivastava BK, Ramkumar V, Muraleedharan KM. Sulfamide-Lattice Restructuring To Form Dimensionally Controlled Molecular Arrays and Gel-Forming Systems. Chemistry 2017; 23:3658-3665. [PMID: 28004423 DOI: 10.1002/chem.201604911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 01/08/2023]
Abstract
A design approach that incorporates structural requirements for the formation of a 1D assembly, fibril stability, and fibril-fibril interactions for gelation was attempted by using amino acid-based sulfamides with the general structure Aa-NH-SO2 -NH-Aa (Aa=amino acid). A preference for 1D assembly alone was not a sufficient condition for gelation, which became evident from studies involving sulfamide esters 1-5. Reducing the crystallization tendency without hindering unidirectional growth was executed through diacids of the sulfamide precursors with various amines that form an envelope around the sulfamide core through salt bridges. This strategy was fruitful, and gels of a wide variety of solvents could be formed by varying the acid and amine components. The use of dodecylamine or benzylamine, which could stabilize the molecular layers through alkyl-chain segregation or π-π interactions improved the gelation tendency, whereas the nature of the amino acid side chain, especially the rotational freedom and hydrophobicity, had a direct role in dictating the solvent preference. Crystallographic studies of these two-component systems gave molecular-level insight into the assembly and showed the importance of anisotropy in the distribution of secondary interactions in gelation.
Collapse
Affiliation(s)
- Saripalli V Raghava
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, Tamil Nadu, India
| | - Bhartendu K Srivastava
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, Tamil Nadu, India
| | - Venkatachalam Ramkumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, Tamil Nadu, India
| | - Kannoth M Muraleedharan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, Tamil Nadu, India
| |
Collapse
|
23
|
Martin AD, Wojciechowski JP, Robinson AB, Heu C, Garvey CJ, Ratcliffe J, Waddington LJ, Gardiner J, Thordarson P. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups. Sci Rep 2017; 7:43947. [PMID: 28272523 PMCID: PMC5341053 DOI: 10.1038/srep43947] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/01/2017] [Indexed: 01/03/2023] Open
Abstract
Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.
Collapse
Affiliation(s)
- Adam D. Martin
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jonathan P. Wojciechowski
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew B. Robinson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Celine Heu
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, 2052, Australia
- Biomedical Imaging Facility (BMIF), Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW, 2052, Australia
| | - Christopher J. Garvey
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW, 2231, Australia
| | - Julian Ratcliffe
- CSIRO Manufacturing, Bayview Ave, Clayton, Victoria 3168, Australia
| | | | - James Gardiner
- CSIRO Manufacturing, Bayview Ave, Clayton, Victoria 3168, Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Moitra P, Subramanian Y, Bhattacharya S. Concentration Dependent Self-Assembly of TrK-NGF Receptor Derived Tripeptide: New Insights from Experiment and Computer Simulations. J Phys Chem B 2017; 121:815-824. [DOI: 10.1021/acs.jpcb.6b10511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Parikshit Moitra
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Yashonath Subramanian
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- Condensed
Matter Theory Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560064, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Director’s
Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
25
|
Arnedo-Sánchez L, Nonappa N, Bhowmik S, Hietala S, Puttreddy R, Lahtinen M, De Cola L, Rissanen K. Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine–fluorine interactions. Dalton Trans 2017; 46:7309-7316. [DOI: 10.1039/c7dt00983f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal complexes from perfluoroalkylamide terpyridine self-assemble into anion selective gels, which manifest self-healing and thermal rearrangement in aqueous dimethyl sulfoxide.
Collapse
Affiliation(s)
| | - Nonappa Nonappa
- Molecular Materials Group
- Department of Applied Physics
- Aalto University School of Science
- Espoo
- Finland
| | - Sandip Bhowmik
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Sami Hietala
- Department of Chemistry
- University of Helsinki
- Helsinki
- Finland
| | - Rakesh Puttreddy
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Manu Lahtinen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| | - Luisa De Cola
- ISIS
- Université de Strasbourg and CNRS UMR 7006
- Strasbourg 67000
- France
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyväskylä
- Finland
| |
Collapse
|
26
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
27
|
Horgan CC, Rodriguez AL, Li R, Bruggeman KF, Stupka N, Raynes JK, Day L, White JW, Williams RJ, Nisbet DR. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Acta Biomater 2016; 38:11-22. [PMID: 27131571 DOI: 10.1016/j.actbio.2016.04.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED The nanofibrillar structures that underpin self-assembling peptide (SAP) hydrogels offer great potential for the development of finely tuned cellular microenvironments suitable for tissue engineering. However, biofunctionalisation without disruption of the assembly remains a key issue. SAPS present the peptide sequence within their structure, and studies to date have typically focused on including a single biological motif, resulting in chemically and biologically homogenous scaffolds. This limits the utility of these systems, as they cannot effectively mimic the complexity of the multicomponent extracellular matrix (ECM). In this work, we demonstrate the first successful co-assembly of two biologically active SAPs to form a coassembled scaffold of distinct two-component nanofibrils, and demonstrate that this approach is more bioactive than either of the individual systems alone. Here, we use two bioinspired SAPs from two key ECM proteins: Fmoc-FRGDF containing the RGD sequence from fibronectin and Fmoc-DIKVAV containing the IKVAV sequence from laminin. Our results demonstrate that these SAPs are able to co-assemble to form stable hybrid nanofibres containing dual epitopes. Comparison of the co-assembled SAP system to the individual SAP hydrogels and to a mixed system (composed of the two hydrogels mixed together post-assembly) demonstrates its superior stable, transparent, shear-thinning hydrogels at biological pH, ideal characteristics for tissue engineering applications. Importantly, we show that only the coassembled hydrogel is able to induce in vitro multinucleate myotube formation with C2C12 cells. This work illustrates the importance of tissue engineering scaffold functionalisation and the need to develop increasingly advanced multicomponent systems for effective ECM mimicry. STATEMENT OF SIGNIFICANCE Successful control of stem cell fate in tissue engineering applications requires the use of sophisticated scaffolds that deliver biological signals to guide growth and differentiation. The complexity of such processes necessitates the presentation of multiple signals in order to effectively mimic the native extracellular matrix (ECM). Here, we establish the use of two biofunctional, minimalist self-assembling peptides (SAPs) to construct the first co-assembled SAP scaffold. Our work characterises this construct, demonstrating that the physical, chemical, and biological properties of the peptides are maintained during the co-assembly process. Importantly, the coassembled system demonstrates superior biological performance relative to the individual SAPs, highlighting the importance of complex ECM mimicry. This work has important implications for future tissue engineering studies.
Collapse
|
28
|
Gupta JK, Adams DJ, Berry NG. Will it gel? Successful computational prediction of peptide gelators using physicochemical properties and molecular fingerprints. Chem Sci 2016; 7:4713-4719. [PMID: 30155120 PMCID: PMC6016447 DOI: 10.1039/c6sc00722h] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023] Open
Abstract
The self-assembly of low molecular weight gelators to form gels has enormous potential for cell culturing, optoelectronics, sensing, and for the preparation of structured materials. There is an enormous "chemical space" of gelators. Even within one class, functionalised dipeptides, there are many structures based on both natural and unnatural amino acids that can be proposed and there is a need for methods that can successfully predict the gelation propensity of such molecules. We have successfully developed computational models, based on experimental data, which are robust and are able to identify in silico dipeptide structures that can form gels. A virtual computational screen of 2025 dipeptide candidates identified 9 dipeptides that were synthesised and tested. Every one of the 9 dipeptides synthesised and tested were correctly predicted for their gelation properties. This approach and set of tools enables the "dipeptide space" to be searched effectively and efficiently in order to deliver novel gelator molecules.
Collapse
Affiliation(s)
- Jyoti K Gupta
- Department of Chemistry , University of Liverpool , Liverpool L69 7ZD , UK . ;
| | - Dave J Adams
- Department of Chemistry , University of Liverpool , Liverpool L69 7ZD , UK . ;
| | - Neil G Berry
- Department of Chemistry , University of Liverpool , Liverpool L69 7ZD , UK . ;
| |
Collapse
|