1
|
Han T, Xu W, Han J, Adibnia V, He H, Zhang C, Luo J. Counterion Distribution in the Stern Layer on Charged Surfaces. NANO LETTERS 2024; 24:10443-10450. [PMID: 39140834 DOI: 10.1021/acs.nanolett.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Counterion adsorption at the solid-liquid interface affects numerous applications. However, the counterion adsorption density in the Stern layer has remained poorly evaluated. Here we report the direct determination of surface charge density at the shear plane between the Stern layer and the diffuse layer. By the Grahame equation extension and streaming current measurements for different solid surfaces in different aqueous electrolytes, we are able to obtain the counterion adsorption density in the Stern layer, which is mainly related to the surface charge density but is less affected by the bulk ion concentration. The charge inversion concentration is further found to be sensitive to the ion type and ion valence rather than to the charged surface, which is attributed to the ionic competitive adsorption and ion-ion correlations. Our findings offer a framework for understanding ion distribution in many physical and chemical processes where the Stern layer is ubiquitous.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wanxing Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jie Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Hongjiang He
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chenhui Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Nayak S, Kumal RR, Lee SE, Uysal A. Elucidating Trivalent Ion Adsorption at Floating Carboxylic Acid Monolayers: Charge Reversal or Water Reorganization? J Phys Chem Lett 2023; 14:3685-3690. [PMID: 37036360 DOI: 10.1021/acs.jpclett.3c00225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We study the adsorption of trivalent neodymium on floating arachidic acid films at the air-water interface by two complementary surface specific probes, sum frequency generation spectroscopy and X-ray fluorescence near total reflection. In the absence of background ions, neodymium ions compensate for the surface charge of the arachidic acid film at a bulk concentration of 50 μM without any charge reversal. Increasing the bulk concentration to 1 mM does not change the neodymium surface coverage but affects the interfacial water structure significantly. In the presence of a high concentration of NaCl, there is overcharging at 1 mM Nd3+, i.e., 30% more Nd3+ than needed to compensate for the surface charge. These results show that the total coverage of neodymium ions is not enough to describe the complete picture at the interface, and interfacial water and ion coverage needs to be considered together to understand more complex ion adsorption and transport processes.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Nayak S, Kumal RR, Uysal A. Spontaneous and Ion-Specific Formation of Inverted Bilayers at Air/Aqueous Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5617-5625. [PMID: 35482964 DOI: 10.1021/acs.langmuir.2c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing better separation technologies for rare earth metals, an important aspect of a sustainable materials economy, is challenging due to their chemical similarities. Identifying molecular-scale interactions that amplify the subtle differences between the rare earths can be useful in developing new separation technologies. Here, we describe the ion-dependent monolayer to inverted bilayer transformation of extractant molecules at the air/aqueous interface. The inverted bilayers form with Lu3+ ions but not with Nd3+. By introducing Lu3+ ions to preformed monolayers, we extract kinetic parameters corresponding to the monolayer to inverted bilayer conversion. Temperature-dependent studies show Arrhenius behavior with an energy barrier of 40 kcal/mol. The kinetics of monolayer to inverted bilayer conversion is also affected by the character of the background anion, although anions are expected to be repelled from the interface. Our results show the outsized importance of ion-specific effects on interfacial structure and kinetics, pointing to their role in chemical separation methods.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Melnikova NB, Malygina DS, Vorobyova OA, Solovyeva AG, Belyaeva KL, Orekhov DV, Knyazev AV. Properties of Langmuir and immobilized layers of betulin diphosphate on aqueous solutions of zinc sulfate and on the surface of zinc oxide nanoparticles. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Dahal YR, Olvera de la Cruz M. Controlling protein adsorption modes electrostatically. SOFT MATTER 2020; 16:5224-5232. [PMID: 32458932 DOI: 10.1039/d0sm00632g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption on surfaces is ubiquitous in biology and in biotechnology. There are various forces required for controlling protein adsorption. Here, we introduce an explicit ion coarse-grained molecular dynamics simulation approach for studying the effects of electrostatics on protein adsorption, and 2D protein assembly on charged surfaces. Our model accounts for the spatial distribution of protein charges. We use catalase as our model protein. We find that the preferential adsorption mode of proteins at low protein concentration on a charged surface is "standing up". When the protein concentration in a solution increases to reach a critical density on the surface, the adsorption mode switches from "standing up" to a mixed state "flat on" and "standing up", which increases the lateral correlations among the adsorbed proteins. As such, the changes in the adsorption mode arise from the protein adsorption that cancel the surface charge and the protein-protein repulsion. This correlated surface structure melts as the salt concentration increases because the charged surface is cancelled by the salt ions and the proteins de-adsorb. For the case of strongly charged surfaces the "standing up" conformation remains more favorable even at high protein adsorption at low salt concentrations since in that conformation the surface charge is cancelled more effectively, generating an even more laterally correlated structure. We elucidate the effects of parameters such as surface charge density, salt concentration, and protein charges on the different adsorption modes and the structure and organization of proteins on the charged surfaces. This study provides a guide for controlling protein assembly on surfaces.
Collapse
Affiliation(s)
- Yuba Raj Dahal
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Monica Olvera de la Cruz
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA. and Department of Chemistry, Northwestern University, Evanston, USA and Department of Physics and Astronomy, Northwestern University, Evanston, USA
| |
Collapse
|
6
|
Nayak S, Lovering K, Bu W, Uysal A. Anions Enhance Rare Earth Adsorption at Negatively Charged Surfaces. J Phys Chem Lett 2020; 11:4436-4442. [PMID: 32406689 DOI: 10.1021/acs.jpclett.0c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Anions are expected to be repelled from negatively charged surfaces. At aqueous interfaces, however, ion-specific effects can dominate over direct electrostatic interactions. Using multiple in situ surface sensitive experimental techniques, we show that surface affinities of SCN- anions are so strong that they can adsorb at a negatively charged floating monolayer at the air-aqueous interface. This extreme example of ion-specific effects may be very important for understanding complex processes at aqueous interfaces, such as chemical separations of rare earth metals. Adsorbed SCN- ions at the floating monolayer increase the overall negative charge density, leading to enhanced trivalent rare earth adsorption. Surface sensitive X-ray fluorescence measurements show that the surface coverage of Lu3+ ions can be triple the apparent surface charge of the floating monolayer in the presence of SCN-. Comparison to NO3- samples shows that the effects are strongly dependent on the character of the anion, providing further evidence of ion-specific effects dominating over electrostatics.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kaitlin Lovering
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
7
|
|
8
|
Wang ZY, Zhang P, Ma Z. On the physics of both surface overcharging and charge reversal at heterophase interfaces. Phys Chem Chem Phys 2018; 20:4118-4128. [DOI: 10.1039/c7cp08117k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of Monte Carlo simulations are employed to reveal the physics of both surface overcharging and charge reversal at a negatively charged dielectric interface exposed to a bulk solution containing a +2:−1 electrolyte in the absence and presence of a monovalent salt.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- School of Science
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Pengli Zhang
- School of Science
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Zengwei Ma
- School of Science
- Chongqing University of Technology
- Chongqing 400054
- China
| |
Collapse
|
9
|
Wang ZY, Wu J. Ion association at discretely-charged dielectric interfaces: Giant charge inversion. J Chem Phys 2017; 147:024703. [DOI: 10.1063/1.4986792] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Miller M, Chu M, Lin B, Bu W, Dutta P. Atomic Number Dependent "Structural Transitions" in Ordered Lanthanide Monolayers: Role of the Hydration Shell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1412-1418. [PMID: 28107635 DOI: 10.1021/acs.langmuir.6b04609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
When lanthanide ions are present in the aqueous subphase of a floating monolayer (Langmuir film), the ions attracted to the interface will in many cases form commensurate and/or incommensurate two-dimensional structures. These lattices depend not only on the molecules forming the monolayer, but also on the atomic number of the lanthanide, with a sudden change between the lattice formed by lighter ions and that formed by heavier ions under a given monolayer. Since there are few other relevant differences between the lanthanides, we attribute the Z-dependent "transition" to the number of water molecules associated with each ion. The first hydration shell is thought to vary continuously from ∼9 in lighter lanthanides to ∼8 in heavier lanthanides.
Collapse
Affiliation(s)
- Mitchell Miller
- Department of Physics & Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| | - Miaoqi Chu
- Department of Physics & Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| | - Binhua Lin
- Center for Advanced Radiation Sources, University of Chicago , Chicago, Illinois 60637, United States
| | - Wei Bu
- Center for Advanced Radiation Sources, University of Chicago , Chicago, Illinois 60637, United States
| | - Pulak Dutta
- Department of Physics & Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interfaces. Sci Rep 2016; 6:30058. [PMID: 27452615 PMCID: PMC4958918 DOI: 10.1038/srep30058] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
Collapse
|