1
|
Day EC, Cunha KC, Zhao RJ, DeStefano AJ, Dodds JN, Yu MA, Bemis JR, Han S, Baker ES, Shea JE, Berlow RB, Knight AS. Insights into conformational ensembles of compositionally identical disordered peptidomimetics. Polym Chem 2024; 15:2970-2980. [PMID: 39781370 PMCID: PMC11709448 DOI: 10.1039/d4py00341a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic N-butylglycine to characterize using a suite of analytical techniques. Using replica exchange molecular dynamics atomistic simulations and liquid chromatography coupled to ion mobility spectrometry, we were able to distinguish the conformations of compositionally identical model sequences. However, differences between these model sequences were more challenging to resolve with characterization tools developed for intrinsically disordered proteins and polymers, including double electron-electron resonance (DEER) spectroscopy and diffusion ordered spectroscopy (DOSY) NMR. Finally, we introduce a facile colorimetric assay using immobilized sequences that leverages a solvatochromic probe, Reichardt's dye, to visually reveal conformational trends consistent with the experimental and computational analysis. This rapid colorimetric technique provides a complementary method to characterize the disorder of macromolecules and examine conformational ensembles as an isolated or multiplexed technique.
Collapse
Affiliation(s)
- Erin C Day
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Keila C Cunha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Roy J Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Audra J DeStefano
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - James N Dodds
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Melissa A Yu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jaina R Bemis
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Erin S Baker
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Rebecca B Berlow
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Smith RS, Weaver DR, King GM, Kosztin I. Chain-Length Dependence of Peptide-Lipid Bilayer Interaction Strength and Binding Kinetics: A Combined Theoretical and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14467-14475. [PMID: 38963062 DOI: 10.1021/acs.langmuir.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy. Following previous bulk experiments, we focused on interactions between short hydrophobic peptides (WLn, n = 1, ..., 5) with 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers, a simple system that probes peptide primary structure effects. Potentials of mean force extracted from CG MD recapitulated the linearity of free energy with the chain length. Simulation results were quantitatively connected to bulk biochemical experiments via a single scaling factor of order unity, corroborating the methodology. Additionally, CG MD revealed an increase in the distance to the transition state, a result that weakens the dependence of the dissociation force on the peptide chain length. AFM experiments elucidated rupture force distributions and, through modeling, intrinsic dissociation rates. Taken together, the analysis indicates a rupture force plateau in the WLn-POPC system, suggesting that the final rupture event involves the last 2 or 3 residues. In contrast, the linear dependence on chain length was preserved in the intrinsic dissociation rate. This study advances the understanding of peptide-lipid interactions and provides potentially useful insights for the design of peptides with tailored membrane-interacting properties.
Collapse
Affiliation(s)
- Ryan S Smith
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dylan R Weaver
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ioan Kosztin
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Qiu C, Whittaker GR, Gellman SH, Daniel S, Abbott NL. Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods. Biophys J 2023; 122:646-660. [PMID: 36650897 PMCID: PMC9841730 DOI: 10.1016/j.bpj.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide (FP) sequences within coronavirus (CoV) spike proteins. Within the FPs of severe acute respiratory syndrome CoV 2 and Middle East respiratory syndrome CoV (MERS-CoV), a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. Although a non-polar triad (Leu-Leu-Phe (LLF)) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS-2 and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore whether single-molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask whether sequence variations between FP1 from SARS-2 and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single-molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single-residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single-residue diversity in viral FPs, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.
Collapse
Affiliation(s)
- Cindy Qiu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nicholas L Abbott
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
4
|
Enhancing the hydrophilicity and biofoulant removal ability of a PVDF ultrafiltration membrane via π-π interactions as measured by AFM. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Wang C, Biok NA, Nayani K, Wang X, Yeon H, Derek Ma CK, Gellman SH, Abbott NL. Cationic Side Chain Identity Directs the Hydrophobically Driven Self-Assembly of Amphiphilic β-Peptides in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3288-3298. [PMID: 33683138 DOI: 10.1021/acs.langmuir.0c03255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydrophobic interactions mediated by nonpolar molecular fragments in water are influenced by local chemical and physical contexts in ways that are not yet fully understood. Here, we use globally amphiphilic (GA) β-peptides (GA-Lys and GA-Arg) with stable conformations to explore if replacement of β3-homolysine (βLys) with β3-homoarginine (βArg) influences the hydrophobically driven assembly of these peptides in bulk aqueous solution. The studies were conducted in 10 mM triethanolamine buffer at pH 7, where both βLys (ammonium) and βArg (guanidinium) side chains are substantially protonated. Comparisons of light scattering measurements and cryo-electron micrographs before and after the addition of 60 vol% MeOH indicate very different outcomes of the hydrophobically driven assembly of AcY-GA-Lys versus AcY-GA-Arg (AcY denotes an N-acetylated-β3-homotyrosine (βTyr) at each N-terminus). Nuclear magnetic resonance and analytical ultracentrifugation confirm that AcY-GA-Lys assembles into large aggregates in aqueous buffer, whereas AcY-GA-Arg at comparable concentrations forms only small oligomers. Titration of AcY-GA-Arg into aqueous solutions of AcY-GA-Lys reveals that the driving force for AcY-GA-Lys association is far stronger than that for AcY-GA-Arg association. We discuss these results in the light of past experimental observations involving single molecule force measurements with GA β-peptides and hydrophobically driven dimerization of conventional peptides that form a GA α-helix upon dimerization (but do not display the Lys versus Arg trend predicted by extrapolating from the earlier AFM studies with β-peptides). Overall, our results establish that the identity of proximal cationic groups, ammonium versus guanidinium, profoundly modulates the hydrophobically driven self-assembly of conformationally stable β-peptides in bulk aqueous solution.
Collapse
Affiliation(s)
- Chenxuan Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison53706, Wisconsin, United States
- Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Naomi A Biok
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison53706, Wisconsin, United States
| | - Karthik Nayani
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca14853, New York, United States
| | - Xiaoguang Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
| | - Hongseung Yeon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
| | - Chi-Kuen Derek Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison53706, Wisconsin, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca14853, New York, United States
| |
Collapse
|
6
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
8
|
Iqbal KM, Bertino MF, Shah MR, Ehrhardt CJ, Yadavalli VK. Nanoscale Phenotypic Textures of Yersinia pestis Across Environmentally-Relevant Matrices. Microorganisms 2020; 8:microorganisms8020160. [PMID: 31979277 PMCID: PMC7074701 DOI: 10.3390/microorganisms8020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
The persistence of bacterial pathogens within environmental matrices plays an important role in the epidemiology of diseases, as well as impacts biosurveillance strategies. However, the adaptation potentials, mechanisms for survival, and ecological interactions of pathogenic bacteria such as Yersinia pestis are largely uncharacterized owing to the difficulty of profiling their phenotypic signatures. In this report, we describe studies on Y. pestis organisms cultured within soil matrices, which are among the most important reservoirs for their propagation. Morphological (nanoscale) and phenotypic analysis are presented at the single cell level conducted using Atomic Force Microscopy (AFM), coupled with biochemical profiles of bulk populations using Fatty Acid Methyl Ester Profiling (FAME). These studies are facilitated by a novel, customizable, 3D printed diffusion chamber that allows for control of the external environment and easy harvesting of cells. The results show that incubation within soil matrices lead to reduction of cell size and an increase in surface hydrophobicity. FAME profiles indicate shifts in unsaturated fatty acid compositions, while other fatty acid components of the phospholipid membrane or surface lipids remained consistent across culturing conditions, suggesting that phenotypic shifts may be driven by non-lipid components of Y. pestis.
Collapse
Affiliation(s)
- Kanwal M. Iqbal
- H.E.J. Research Institute, University of Karachi, Pakistan 75270; (K.M.I.); (M.R.S.)
| | - Massimo F. Bertino
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Muhammed R. Shah
- H.E.J. Research Institute, University of Karachi, Pakistan 75270; (K.M.I.); (M.R.S.)
| | | | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: ; Tel.: +1-804-828-0587
| |
Collapse
|
9
|
Wang C, Ma CKD, Yeon H, Wang X, Gellman SH, Abbott NL. Nonadditive Interactions Mediated by Water at Chemically Heterogeneous Surfaces: Nonionic Polar Groups and Hydrophobic Interactions. J Am Chem Soc 2017; 139:18536-18544. [DOI: 10.1021/jacs.7b08367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chenxuan Wang
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chi-Kuen Derek Ma
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Hongseung Yeon
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Xiaoguang Wang
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas L. Abbott
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Bowman KA, Aarstad OA, Stokke BT, Skjåk-Bræk G, Round AN. Sliding Contact Dynamic Force Spectroscopy Method for Interrogating Slowly Forming Polymer Cross-Links. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12814-12822. [PMID: 27813412 DOI: 10.1021/acs.langmuir.6b03414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic single-molecule force spectroscopy (SMFS), conducted most commonly using AFM, has become a widespread and valuable tool for understanding the kinetics and thermodynamics of fundamental molecular processes such as ligand-receptor interactions and protein unfolding. Where slowly forming bonds are responsible for the primary characteristics of a material, as is the case in cross-links in some polymer gels, care must be taken to ensure that a fully equilibrated bond has first formed before its rupture can be interpreted. Here we introduce a method, sliding contact force spectroscopy (SCFS), that effectively eliminates the kinetics of bond formation from the measurement of bond rupture. In addition, it permits bond rupture measurements in systems where one of the binding partners may be introduced into solution prior to binding without tethering to a surface. Taking as an example of a slowly forming bond, the "eggbox" junction cross-links between oligoguluronic acid chains (oligoGs) in the commercially important polysaccharide alginate, we show that SCFS accurately measures the equilibrated bond strength of the cross-link when one chain is introduced into the sample solution without tethering to a surface. The results validate the SCFS technique for performing single-molecule force spectroscopy experiments and show that it has advantages in cases where the bond to be studied forms slowly and where tethering of one of the binding partners is impractical.
Collapse
Affiliation(s)
- Kate A Bowman
- School of Pharmacy, University of East Anglia , Norwich, United Kingdom
| | | | | | | | - Andrew N Round
- School of Pharmacy, University of East Anglia , Norwich, United Kingdom
| |
Collapse
|